• Title/Summary/Keyword: computational domain

Search Result 1,269, Processing Time 0.032 seconds

The Analysis of Lossy Dielectric using Surface Impedance Boundary Condition (표면 임피던스 경계조건을 이용한 손실유전체 해석)

  • Kim, Byung-Chan;Kim, Che-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1744-1746
    • /
    • 1996
  • Surface impedance boundary condition(SIBC) concepts are introduced into the finite-difference time-domain(FDTD) method. Lossy conductors are replaced by surface impedance boundary computations reducing the soluton space and producing significant computational savings. Specifically, a surface impedance boundary condition is developed to reduce a lossy dielectric half-space. Since Maxwell's eqations are solved directly, the reflected and transmitted pulse amplitude demonstrate how the reflection and transmision coefficient determine reflected wave amplitude. In this paper, two implementations of reflection coefficient are presented. One implementation is a standard FDTD technique and the other is a FDTD using surface impedence boundary condition(FDTD-SIBC) that are applicabIe over a very large frequency bandwidth. Particulary, an efficient way to transform the time domain results to frequency domain is presented. Thus, frequency domain results are presented in one dimension and are compared with exact results.

  • PDF

Hearing aid application of feedback cancellation algorithm in frequency domain (주파수 대역에서의 피드백 제거 알고리즘의 보청기 응용)

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.272-279
    • /
    • 2016
  • In this paper, the realization of a hearing aid adaptively cancelling feedback noise was considered. Conventional least mean square method in time domain was transformed into frequency domain in order to minimize computational burden. The adaptive filter algorithm was evaluated by Matlab (Matrix laboratory), and it was confirmed by CSR 8675 Bluetooth DSP IC (Digital Signal Processor Integrated Circuit) chip firmware realization. Some remote control features by a smart phone was added to the smart hearing aid for user interface easiness.

Efficient Finite Element Heat Transfer Analysis by Decomposing a Domain and Radiation Boundaries (영역 및 복사 경계의 완전 분할을 통한 유한요소 열전달 해석의 효율화)

  • Shin, Eui-Sup;Kim, Yong-Uhn;Kim, Sung-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.836-843
    • /
    • 2008
  • An efficient domain/boundary decomposition method is applied for heat transfer problems with non-linear thermal radiation boundaries. The whole domain of solids or structures is considered as set of subdomains, an interface, and radiation interfaces. In a variational formulation, simple penalty functions are introduced to connect an interface or radiation interfaces with neighboring subdomains that satisfy continuity conditions. As a result, non-linear finite element computations due to the thermal radiation boundaries can be localized within a few subdomains or radiation interfaces. Therefore, by setting up suitable solution algorithms for the governing finite element equations, the computational efficiency can be improved considerably. Through a set of numerical examples, these distinguishing characteristics of the present method are investigated in detail.

DOMAIN OF INFLUENCE OF LOCAL VOLATILITY FUNCTION ON THE SOLUTIONS OF THE GENERAL BLACK-SCHOLES EQUATION

  • Kim, Hyundong;Kim, Sangkwon;Han, Hyunsoo;Jang, Hanbyeol;Lee, Chaeyoung;Kim, Junseok
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • We investigate the domain of influence of the local volatility function on the solutions of the general Black-Scholes model. First, we generate the sample paths of underlying asset using the Monte Carlo simulation. Next, we define the inner and outer domains to find the effective volatility region. To confirm the effect of the inner domain, we use the root mean square error for the European call option prices, and then change the values of volatility in the proposed domain. The computational experiments confirm that there is an effective region which dominates the option pricing.

Mismatching Refinement with Domain Decomposition and Its Application to the Finite Element Analysis of the Extrusion Process (영역분할에 의한 격자세분화 기법 및 압출공정의 유한요소해석에의 적용)

  • Park, Keun;Yang, Dong-Yol
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.284-293
    • /
    • 1999
  • The rigid-plastic finite element analysis requires a large amount of computation time due to its non-linearity. For economic computation, mismatching refinement, and efficient domain decomposition method with different mesh density for each sub domain, is developed. A modified velocity alternating scheme for the interface treatment is proposed in order to obtain good convergence and accuracy. As a numerical example, the axisymmetric extrusion process is analyzed. The results are discussed for the various velocity update schemes form the viewpoint of convergence and accuracy. The three-dimen-sional extrusion process with rectangular section is analyzed in order to verify the effectiveness of the proposed method. Comparing the results with those of the conventional method of full region analysis, the accuracy and the computational efficiency of the proposed method are then discussed.

  • PDF

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

A DOMAIN DECOMPOSITION PRECONDITIONER FOR STEADY GROUNDWATER FLOW IN POROUS MEDIA

  • Ghahreman, N.;Kerayechian, A.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.773-785
    • /
    • 2000
  • In this paper an algorithm is presented based on the additive Schwarz method for steady groundwater flow in a porous medium. The subproblems in the algorithm correspond to the problem on a coarse grid and some overlapping subdomains. It will be shown that the rate of convergence is independent of the mesh parameters and discontinuities of the coefficients, and depends on the overlap ratio.

Applications of Haar Wavelet Based Multiresolution Time-Domain Method to Microwave Structures (Haar 웨이블릿 다중분해능 시간영역 해석법을 이용한 마이크로파 소자 해석)

  • 주세훈;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.935-950
    • /
    • 1999
  • A multiresolution time-domain analysis scheme is derived for the analysis of microwave structures by using Haar wavelets to discretize the Maxwell's curl equation. This technique requires less computational effort than the conventional FDTD method because larger space grid can be used in the simulations. To validate this scheme, several 2-D·3-D microwave structures are simulated and the results are compared with those of the conventional FDTD scheme.

  • PDF

ATTRACTORS AND QUASI-ATTRACTORS OF A FLOW

  • Zuo, Chunyan;Wang, Xiaoxia
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.411-417
    • /
    • 2007
  • In this paper, the connection among the attractor, the attractor neighborhood and the domain of influence are investigated. A necessary and sufficient condition of the existence of the quasi-attractor is established. Some results of Conley in [2] are generalized.