• Title/Summary/Keyword: computational calculation

Search Result 1,086, Processing Time 0.024 seconds

Synthesis and properties of indole based chemosensor

  • Lee, Jun-Hee;Wang, Sheng;Yu, Hyung-Wook;Kim, Hyung-Joo;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.36-36
    • /
    • 2011
  • We synthesized new dye sensor based on indole compound. Through the UV-vis absorptions, we analyzed chemosensing properties to explain metal binding properties. The peak absorptions increased at 472 nm when added metal cations($Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Ni^{2+}$ and $Cr^{3+}$) and gradually decreased the peak at 516 nm. Thus, this UV-Vis absorption behavior clearly showed the metal binding reaction. To measure energy level of used dye sensor, HOMO/LUMO energy value was calculated with cyclovaltagramm(CV) and using computational calculation method, in which we estimated the optimum structure of dye sensor. CV and computational calculation method, both compared to find suitable geometric structure. (with almost same energy values.) From the computational calculation, dye sensor has plane structure. So, Amine and ketone in the dye sensor faced each other and makes position to bind metal cations. In addition, these positions was supported pull-push electron system and generated MLCT process, when the dye sensor was bonded with the metal cations and resulted chemosensing properties. Through the electrochemical and computational calculation method analyze, we proposed the chemosensing principles that the dye sensor bind the metal cation between ketone and amine. Finally, the formation type of metal ion bindings was determined by Job's plot measurements.

  • PDF

A spent nuclear fuel source term calculation code BESNA with a new modified predictor-corrector scheme

  • Duy Long Ta ;Ser Gi Hong ;Dae Sik Yook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4722-4730
    • /
    • 2022
  • This paper introduces a new point depletion-based source term calculation code named BESNA (Bateman Equation Solver for Nuclear Applications), which is aimed to estimate nuclide inventories and source terms from spent nuclear fuels. The BESNA code employs a new modified CE/CM (Constant Extrapolation - Constant Midpoint) predictor-corrector scheme in depletion calculations for improving computational efficiency. In this modified CE/CM scheme, the decay components leading to the large norm of the depletion matrix are excluded in the corrector, and hence the corrector calculation involves only the reaction components, which can be efficiently solved with the Talyor Expansion Method (TEM). The numerical test shows that the new scheme substantially reduces computing time without loss of accuracy in comparison with the conventional scheme using CRAM (Chebyshev Rational Approximation Method), especially when the substep calculations are applied. The depletion calculation and source term estimation capability of BESNA are verified and validated through several problems, where results from BESNA are compared with those calculated by other codes as well as measured data. The analysis results show the computational efficiency of the new modified scheme and the reliability of BESNA in both isotopic predictions and source term estimations.

Efficient Calculation of Gas-kinetic BGK scheme for Analysis of Inviscid and Viscous Flows (점성 및 비점성 유동장 해석을 위한 BGK 수치기법의 효율적 계산)

  • Chae, Dong-Suk;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 1998
  • From the Boltzmann equation with BGK approximation, a gas-kinetic BGK scheme is developed and methods for its efficient calculation, using the convergence acceleration techniques, are presented in a framework of an implicit time integration. The characteristics of the original gas-kinetic BGK scheme are improved in order for the accurate calculation of viscous and heat convection problems by considering Osher's linear subpath solutions and Prandtl number correction. Present scheme applied to various numerical tests reveals a high level of accuracy and robustness and shows advantages over flux vector splittings and Riemann solver approaches from Euler equations.

  • PDF

CFD Simulations of the Ground Surface Temperature and Air Temperature, Air flow Coupled with Solar Radiation (태양복사열에 따른 지표면 온도와 열, 기류 환경 시뮬레이션 연구)

  • Lee, JuHee;Kim, JaeGwon;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • The thermal environment in a small city rapidly deteriorates due to the urbanization and overpopulation. It is important to understand and predict the thermal environment in a city area. The thermal environment is highly affected by the solar radiation and temperature distributions changing over time periodically. To predict the thermal environment precisely, the solar radiation calculation including radiation strength, incidence angle, and thermal radiation between building surface and ground should be considered. In this study, the computational domain includes various artificial structures such as building, ground, asphalt, brick and grass. To consider the solar radiation, the unsteady state numerical calculation is performed from sun rise to mid-day (2:00pm). The numerical methods consist of solar load and one dimensional heat conduction through the boundaries to reduce the computational load and improve the flexibility of the calculation.

Simplified DC Calculation Method for Simplified Depth Coding Mode of 3D High Efficiency Video Coding

  • Jo, Hyunho;Lee, Jin Young;Choi, Byeongdoo;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • This paper proposes a simplified DC calculation method for simplified depth coding (SDC) mode of 3D High Efficiency Video Coding (3D-HEVC) to reduce the computational complexity. For the computational complexity reduction, the current reference software of 3D-HEVC employs reference samples sub-sampling method. However, accumulation, branch, and division operations are still utilized and these operations increase computational complexity. The proposed method calculates DC value without those operations. The experimental results show that the proposed method achieves 0.1% coding gain for synthesized views in common test condition (CTC) with the significantly reduced number of computing operations.

Calculation of NURBS Curve Intersections using Bzier Clipping (B$\acute{e}$zier클리핑을 이용한NURBS곡선간의 교점 계산)

  • 민병녕;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.113-120
    • /
    • 1998
  • Calculation of intersection points by two curves is fundamental to computer aided geometric design. Bezier clipping is one of the well-known curve intersection algorithms. However, this algorithm is only applicable to Bezier curve representation. Therefore, the NURBS curves that can represent free from curves and conics must be decomposed into constituent Bezier curves to find the intersections using Bezier clipping. And the respective pairs of decomposed Bezier curves are considered to find the intersection points so that the computational overhead increases very sharply. In this study, extended Bezier clipping which uses the linear precision of B-spline curve and Grevill's abscissa can find the intersection points of two NURBS curves without initial decomposition. Especially the extended algorithm is more efficient than Bezier clipping when the number of intersection points is small and the curves are composed of many Bezier curve segments.

  • PDF

Multicriteria shape design of an aerosol can

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis;Olivier, Beigneux
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection - NBI - algorithm with Radial Basis Function - RBF - metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai-Smorodinsky equilibria.

Hierarchical Haze Removal Using Dark Channel Prior (Dark Channel Prior를 이용한 계층적 영상 안개 제거 알고리즘)

  • Kim, Jin-Hwan;Kim, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.457-464
    • /
    • 2010
  • The haze removal algorithm using dark channel prior, which was proposed by He et al., is an efficient algorithm and presents impressive results. But its high memory and computational requirements limit its applications. In this paper, we propose a method to improve the memory usage and calculation speed. We notice that the matting process accounts for most calculation time, so we replace the matting process with a fast bilateral filtering scheme. Using the bilateral filter, we can reduce the memory usage, but its computational complexity is still high. To reduce the computational complexity as well, we adapt a hierarchical structure for the bilateral filtering. Experimental results show that the proposed algorithm can remove haze in a picture effectively, while requiring much less computations than the He et al.'s method.

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.151-159
    • /
    • 2021
  • Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.

Numerical Analysis of 2D, Steady, Inviscid Transonic Flow Through Stationary Compressor Cascade (2차원 직선 정지 익렬에서의 비점성 천이음속유동에 관한 수치적 해석)

  • 최인환;이진호;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1244-1253
    • /
    • 1990
  • Time-Marching methods solving Euler equations are used for calculation of two-dimensional, steady, inviscid flow through a stationary compressor cascade. Calculation method is based on the Denton`s opposed difference scheme. A smoothing in the axial direction is used to increase the stability of solution. The computational grid consists of quadrilateral elements, one of which has four nodes at each corner and the grid points on the upper periodic boundaries are located one pitch away from those on the lower boundaries to satisfy the periodicity condition. Results of calculation show good agreement with other computational and experimental results, proving that the present method of calculation should be applied with confidence for the cascade flow with shock wave.