• Title/Summary/Keyword: compressive stress dependency

Search Result 19, Processing Time 0.03 seconds

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Effect of transverse compressive stress on $I_{c}$ degradation characteristics in Bi-2223 superconducting tapes (Bi-2223 초전도테이프의 임계전류 열화특성에 미치는 횡방향 압축응력의 영향)

  • 신형섭;김병수;오상수;하동우;하홍수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.101-104
    • /
    • 2003
  • Influences of transverse compressive stress on the critical current ( $I_{c}$) in AgMg and AgMn alloy sheathed Bi-2223 tapes were investigated at 77 K and 0 T. The $I_{c}$ degradation behavior depending on sample specifications was discussed in viewpoints of n-value and damage morphology. As a result, Bi-2223 tapes showed a significant drop in $I_{c}$ for stresses greater than 50MPa. The AgMg sheathed Bi-2223 tapes representing higher $I_{c}$ showed a lower $\sigma$$_{irr}$ and a significant $I_{c}$ degradation with increase in compressive stress. There existed a voltage tap separation dependency of the $I_{c}$ degradation behavior caused by the transverse compressive stress.sive stress.s.

  • PDF

Evolution of Remnant State Variables and Linear Material Moduli in a PZT Cube under Compressive Stress at Room and High Temperatures (상온과 고온에서 압축하중을 받는 PZT에서의 잔류상태변수와 선형재료상수의 변화)

  • Ji, Dae Won;Kim, Sang-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.82-86
    • /
    • 2013
  • A poled lead zirconate titanate (PZT) cube specimen is subjected to impulse-type compressive stress with increasing magnitude in parallel to the poling direction at four room and high temperatures. During the ferroelastic domain switching induced by the compressive stress, electric displacement in the poling direction and longitudinal and transverse strains are measured. Using the measured responses, linear material properties, namely, the piezoelectric and elastic compliance coefficients, are evaluated by a graphical method, and the effects of stress and temperature are analyzed. Finally, the dependency of the evaluated linear material properties on relative remnant polarization is analyzed and discussed.

Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET (Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석)

  • Na, Min-Ki;Han, In-Shik;Choi, Won-Ho;Kwon, Hyuk-Min;Ji, Hee-Hwan;Park, Sung-Hyung;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, the dependence of MOSFET performance on the channel stress is characterized in depth. The tensile and compressive stresses are applied to CMOSFET using a nitride film which is used for the contact etch stop layer (CESL). Drain current of NMOS and PMOS is increased by inducing tensile and compressive stress, respectively, due to the increased mobility as well known. In case of NMOS with tensile stress, both decrease of the back scattering ratio ($\tau_{sat}$) and increase of the thermal injection velocity ($V_{inj}$) contribute the increase of mobility. It is also shown that the decrease of the $\tau_{sat}$ is due to the decrease of the mean free path ($\lambda_O$). On the other hand, the mobility improvement of PMOS with compressive stress is analyzed to be only due to the so increased $V_{inj}$ because the back scattering ratio is increased by the compressive stress. Therefore it was confirmed that the device performance has a strong dependency on the channel back scattering of the inversion layer and thermal injection velocity at the source side and NMOS and PMOS have different dependency on them.

A Study on The Effect of Compressive Residual Stress on fatigue Crack Propagation Behavior of Spying Steel (스프링강의 피로크랙 진전거동에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.200-207
    • /
    • 2003
  • In this paper, the effect of the compressive residual stresses which were obtained under the various shot velocities of shot balls on the fatigue behaviors of a spring steel, were investigated. The examination of CT specimen test were executed with the materials(JISG SUP9) which are being commonly used for the springs of automotive vehicles. As a result, the optimal shot velocity of shot balls were acquired considering the peak values of the compressive residual stresses on the surface of specimen and effect on the speed of the fatigue crack propagation da/dN in stage II and the threshold stress intensity factor range Δ$K_{th}$ in stage I. Also the material constant C and the crack propagation index m in the formula of paris law da/dN= C $({\Delta}K^m)$ were suggested in this work to estimate the dependency on the shot velocity.

Prediction of Layer Rutting on Pavement Foundations Based on Stress Dependency (응력의존성을 고려한 도로기초의 층변형 예측)

  • Park Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.73-80
    • /
    • 2005
  • There are several major practical consequences of stress-dependent properties of unbound pavement foundations. Among those are the stress-dependent modulus and Poisson's ratio's that may change, the compressive stresses that are generated in materials under load, the stiffening and strengthening effect of repeated loading to progressively increase the unbound pavement materials resistance to permanent deformation. In order to study these, the algorithm for predicting deformations on conventional flexible pavements are proposed and the stress-dependent effects on layer deformation are presented in this paper by the developed stress-dependent finite element analysis program with the selected models.

Characteristics of Pressure Confined Concrete under Monotonic Compression

  • Rhim, Hong-Chul;Buyukozturk, Oral;Soon, K. A;Kim, Gwang-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • Tests of cylindrical concrete specimens under lateral confining pressure of up to 5,000 psi were conducted for two different axial loading cases: monotonic compression and monotonic tension. The purpose of this experimental investigation is to provide stress-strain characteristics of plain concrete in triaxial stress conditions. Lateral confining pressure levels, loading rates, and strength of concrete specimens are varied as parameters. The loading rates are $34.75$\times$10^{-5}$ in/in/sec for fast, $\times$$6.95x10^{-5}$ in/in/sec for normal. and $0.579$\times$10^{-5}$ in/in/sec for slow loading cases. The concrete specimens used in the experiment have compressive strength of 3,500 psi and 6,500 psi, respectively. Findings of this experiment include dependency of the stress-strain behavior of concrete on the above parameters under two different types of loading conditions. The parametric study includes a series of 106 triaxial tests.

  • PDF

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Tensile Strain Characteristics of Critical Current in YBCO Coated Conductors (YBCO CC테이프 임계전류의 인장변형률 특성)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.274-275
    • /
    • 2005
  • The tensile strain dependency of critical current in YBCO coated conductors was examined at 77K and in the self magnetic field. A commercially available YBCO sample with Cu stabilizer layer was supplied. There existed a peak in the relation between the Ie and tensile strain, and the reversible variation of $I_c$ with applied tensile strain was found. In the neutral axis Ni alloy RABiTS-$Y_2O_3$/YSZ/$CeO_2$ buffered YBCO tape, the $I_c$ recovered reversibly until the applied strain reached to about 0.5%, representing that a significant residual compressive strain induced during cooling to 77 K influenced the axial strain tolerance of YBCO conductors. To investigate the strain and stress influence on the $I_c$, the stress-strain characteristics of YBCO conductors measured at 77 K were discussed.

  • PDF