• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.053 seconds

Effect of the Replacement of Recycled Coarse Aggregates Under 13mm on Engineering Properties of the Concrete (13mm 이하 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Kang, Byeong-Heo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • The objective of this paper is to investigate experimentally the effect of the substitution of recycled aggregates under 13mm on the properties of the concrete using coarse aggregate with size of 13~25mm. Recycled aggregate under 13mm were substituted to the concrete ranged from 10% to 100%. To compare the properties with the case of recycled aggregate, crushed stone with smaller than 13mm was also substituted to the concrete by 20% and 40%. Test results showed that increase of recycled aggregate under 13mm resulted in the increase of slump and compressive strength compared with plain mixture, which was made with only aggregate with 13~25mm size. This is due to the dense gradation of aggregate in association with addition of relatively small particle. It is thought that the use of recycled aggregate under 13mm along with 30% contributes to the quality improvement of the concrete made with only 13~25mm aggregate.

A Study on Fabrication and Characterization of Inorganic Insulation Material by Hydrothermal Synthesis Method (1) (수열합성법을 이용한 무기계 단열소재 제조방법 및 특성에 관한 연구 (1))

  • Seo, Sung-Kwan;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun;Park, Jae-Wan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.219-224
    • /
    • 2013
  • In this study, the inorganic insulating material was fabricated with quartzite, ordinary portland cement(OPC), lime and anhydrous gypsum. After characteristic analysis of slurry, the optimum mixing ratio was derived with different $CaO/SiO_2$ mole ratio. Based on derived mixing ratio, the inorganic insulating material was fabricated at different water content and hydrothermal synthesis conditions. Specific gravity was $0.26g/cm^3$, compressive strength was 0.4 MPa, and thermal conductivity was 0.064 W/mK. This properties were enhanced performance of conventional ALC (Autoclaved Lightweight Concrete). And it can replace organic insulation with harmless inorganic insulation through continues research and development.

Effect of Carbon Amino Silica Black Contained Superplasticizer on the Engineering Properties and Chromaticity of Black Color Concrete (카본 아미노 실리카 블랙 기반 고성능 감수제가 블랙 컬러 콘크리트의 공학적 특성 및 발색도에 미치는 영향)

  • Han, Min-Cheol;Hong, Seok-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.181-188
    • /
    • 2013
  • This paper is to investigate experimentally an effect of carbon amino silica black-superplasticizer(CASB-SP)on the engineering properties and chromaticity of black color concrete with 0.45 of W/C(water to cement). CASB-SP and carbon black were applied for pigment of the concrete. To prevent efflorescence of concrete, four different water repellent agents were also applied. As results, it was found that use of CASB-SP increased the slump and air contents. Furthermore, the use of CASB-SP increased the compressive strength. As CASB-SP dosages increased, chromaticity was well developed. For the effect of water repellent agent, the use of epoxy type was effective for protection from efflorescence. Based on test results, it was evaluated that 0.5% of CASB-SP effectively improve the concrete quality as well as enhance the chromaticity with proper dosage.

Manufacturing of Eco-Friend Concrete Block using Recycled Materials (순환자원을 활용한 환경친화형 콘크리트 블록 제조)

  • Lee, Jae-Jin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.389-394
    • /
    • 2017
  • The aim of the research is providing the application method of recycled materials to manufacture the low costed eco-friend block at currently operated concrete block plant. In this research, based on the previous research results on three types of slag cement with illite, desulfurized gypsum, and wasted refractory products, the actual block product was manufactured by the currently operated plant facility and evaluated their properties to suggest the optimal proportions. As an experimental results, in aspect of compressive strength, absorption ratio, freezing resistance, and pH, type III slag incorporating 5% desulfurized gypsum with 1% replaced illite as an aggregate could be suggested as am optimal proportion. In additionally, considering the high cost of the illite, it can be considered as an optimal proportion that type III slag incorporating 5% desulfurized gypsum for binder.

Properties of Permeable Formwork using Permeable Liner (투수시트를 활용한 투수거푸집의 특성)

  • Lee, Jong Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.419-426
    • /
    • 2012
  • Fresh concrete has 10~20% extra water in it. As those water remain entrapped air in the concrete, life span of structures is reduced. For that reason, if extra water is eliminated, it will be useful to improve the durability of the structures. Though there were many reports about permeable formwork, the study on the properties of permeable liner itself has been insufficient. In addition, making holes on the form causes lowering of workability. Therefore, this study reviewed the properties of woven and non-woven permeable liner and formwork which has no holes on the form. For the woven and non-woven permeable liner, they showed great application with W/C decrease, lowering roughness, increased compressive strength of surface area and slight loss of cement paste, when the were applied to concrete. In addition, they showed different performance according to the density of woven liner or thickness of non-woven liner. Furthermore, when using the draining non-woven permeable liner which has drainage path inside, concrete surface showed required performance with high workability, without drilling the holes on the form.

A Comparative Study on the Applicability of CNT-coated Glass Fiber for Wind Blades (풍력 블레이드를 위한 CNT 코팅 유리섬유의 적용성에 대한 비교 연구)

  • Jang, Hong-Kyu;Kim, Young-Chul
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.336-341
    • /
    • 2016
  • This paper conducted the study on the electromagnetic and mechanical applicability of CNT-coated glass fiber for wind blades. Large-size wind blade has the serious pending problems to meet the target, such as interfering radar signals, increasing weights, and increasing repair costs. In this paper, we are suggesting the CNT-coated glass fiber in order to overcome these problems. First, the CNTs were strongly coated on the surfaces of glass fiber by suggested coating process, and the CNT-coated glass fiber/epoxy composites were fabricated by Va-RTM process. We designed and fabricated a radar absorbing structure using the CNT-coated glass fiber, which showed over 90% radar absorbing performance between 8.3 and 12.1 GHz frequency. In addition, we confirmed the improvement of mechanical properties on the strength and modulus of tensile, compressive, and in-plane shear.

Stress Analysis of PS Anchorage Zone Using Ultra High Performance Concrete (UHPC를 적용한 PS 정착부의 응력해석)

  • Kim, Jee Sang;Choi, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1349-1360
    • /
    • 2013
  • The post-tensioned anchorage zones of normal concrete have larger cross sections because of congested reinforcements to resist high bearing and bursting stresses. The high compressive and tensile strength of newly developed UHPC (Ultra High Performance Concrete) may reduce the cross sectional dimensions and simplify the reinforcement details, if used for post-tensioned members. The Finite Element Analysis was performed to evaluate the mechanical behavior of post-tensioned anchorage zones using UHPC without anchorage plates and confining reinforcements. The results show that the maximum bursting stresses are less than the values given in current design code without failure due to vertical cracks. The location of maximum bursting stresses were at 0.2 times of width of the models. The bursting force from FEA is less than that is obtained using simplified formular in Korean Bridge Design Code.

Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation (구형압입을 이용한 레이저 용접된 절단 휠의 잔류응력 분포 측정)

  • Lee, Yun-Hee;Lee, Wan-Kyu;Jeong, In-Hyeon;Nahm, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

Preparation of Foamed Glass Block from Recycled Soda-lime-silicate Glasses by Chemical Composition Control (폐 소다석회 유리의 조성조절에 의한 발포유리블록의 제조)

  • Kim, Jung-Min;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.382-390
    • /
    • 2013
  • Foaming process of waste soda lime glasses by just chemical composition control of vitreous feed materials was investigated to find a novel and efficient recycling process. For the chemical composition control of feed materials, 10 wt. parts of $SiO_2$, 0.5 wt. parts of $Na_2SO_4$, 3.0 wt. parts of $B_2O_3$, and 0.3 wt. parts of carbon black as the foaming agent were mixed with 100 wt. parts of soda-lime vitreous feed powder. Proper conditions for foaming process in tunnel kiln are the foaming temperature of $830{\sim}850^{\circ}C$, the foaming time of 30~35 min, and the vitreous feed powder particle size of -325 mesh. Properties of foamed glass blocks obtained under these foaming conditions showed the density of $0.17{\sim}0.21g/cm^3$, thermal conductivity of $0.06{\pm}0.005kcal/h{\cdot}m{\cdot}^{\circ}C$, moisture absorption of 1.1~1.5%, and compressive strength of $20{\sim}30kgf/mm^2$.

Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks

  • Alzeebaree, Radhwan;Gulsan, Mehmet Eren;Nis, Anil;Mohammedameen, Alaa;Cevik, Abdulkadir
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.201-218
    • /
    • 2018
  • In this study, the effects of magnesium sulfate on the mechanical performance and the durability of confined and unconfined geopolymer concrete (GPC) specimens were investigated. The carbon and basalt fiber reinforced polymer (FRP) fabrics with 1-layer and 3-layers were used to evaluate the performances of the specimens under static and cyclic loading in the ambient and magnesium sulfate environments. In addition, the use of FRP materials as a rehabilitation technique was also studied. For the geopolymerization process of GPC specimens, the alkaline activator has selected a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) with a ratio ($Na_2SiO_3/NaOH$) of 2.5. In addition to GPC specimens, an ordinary concrete (NC) specimens were also produced as a reference specimens and some of the GPC and NC specimens were immersed in 5% magnesium sulfate solutions. The mechanical performance and the durability of the specimens were evaluated by visual appearance, weight change, static and cyclic loading, and failure modes of the specimens under magnesium sulfate and ambient environments. In addition, the microscopic changes of the specimens due to sulfate attack were also assessed by scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that geopolymer specimens produced with nano-silica and fly ash showed superior performance than the NC specimens in the sulfate environment. In addition, confined specimens with FRP fabrics significantly improved the compressive strength, ductility and durability resistance of the specimens and the improvement was found higher with the increased number of FRP layers. Specimens wrapped with carbon FRP fabrics showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabrics. Both FRP materials can be used as a rehabilitation material in the sulfate environment.