• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.03 seconds

Shrinkage Characteristic of Cementitious Composite Materials for Additive Manufacturing (적층공법을 적용한 시멘트계 복합재료의 수축특성)

  • Lee, Hojae;Kim, Ki-Hoon;Yoo, Byeong-Hyun;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2019
  • In the present study is focused on the evaluation of the shrinkage characteristics of mix proportion using viscosity agent for printing. Also, another purpose is to compare the shrinkage properties of the mold cast specimen with the additive manufactured specimen using 3D printing techniques. Viscosity agent makes the shrinkage was reduced by an average of 25% (as of 56 days) compared to the reference mix. The effects of reduced shrinkage were also founded, with a reduction of about 15% (as of 28 days).As a result of evaluating the shrinkage using the additive manufactured specimen and the mold cast specimen prepared by the printing mix, the shrinkage of the additive manufactured specimen was reduced by about 25% (based on 28 days). Based on the results of this study, it is possible to predict the shrinkage rate and the occurrence of cracks due to shrinkage on the printing of cement-based composite materials using 3D printing.

Bond deterioration of corroded steel in two different concrete mixes

  • Zhou, Haijun;Liang, Xuebing;Wang, Zeqiang;Zhang, Xiaolin;Xing, Feng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.725-734
    • /
    • 2017
  • This paper investigated the effects of rebar corrosion on bond performance between rebar and two different concrete mixes (compressive strengths of 20.7 MPa and 44.4 MPa). The specimen was designed as a rebar centrally embedded in a 200 mm concrete cube, with two stirrups around the rebar to supply confinement. An electrochemical accelerated corrosion technique was applied to corrode the rebar. 120 specimens of two different concrete mixes with various reinforcing steel corrosion levels were manufactured. The corrosion crack opening width and length were recorded in detail during and after the corrosion process. Three different loading schemes: monotonic pull-out load, 10 cycles of constant slip loading followed by pull-out and varied slip loading followed by pull-out, were carried out on the specimens. The effects of rebar corrosion with two different concrete mixes on corrosion crack opening, bond strength and corresponding slip value, initial slope of bond-slip curve, residual bond stress, mechanical interaction stress, and energy dissipation, were discussed in detail. The mean value and coefficient of variation of these parameters were also derived. It was found that the coefficient of variation of the parameters of the corroded specimens was larger than those with intact rebar. There is also obvious difference in the two different concrete mixes for the effects of rebar corrosion on bond-slip parameters.

Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load

  • Kim, Jin Hee;Rhee, Inkyu;Jung, Yong Chae;Ha, Sumin;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.24
    • /
    • pp.90-96
    • /
    • 2017
  • We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G' bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.

New Co10Fe10Mn35Ni35Zn10 high-entropy alloy Fabricated by Powder Metallurgy (분말야금법으로 제조한 새로운 Co10Fe10Mn35Ni35Zn10 고엔트로피 합금)

  • Yim, Dami;Park, Hyung Keun;Tapia, Antonio Joao Seco Ferreira;Lee, Byeong-Joo;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.208-212
    • /
    • 2018
  • In this paper, a new $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ high entropy alloy (HEA) is identified as a strong candidate for the single face-centered cubic (FCC) structure screened using the upgraded TCFE2000 thermodynamic CALPHAD database. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA is fabricated using the mechanical (MA) procedure and pressure-less sintering method. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA, which consists of elements with a large difference in melting point and atomic size, is successfully fabricated using powder metallurgy techniques. The MA behavior, microstructure, and mechanical properties of the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA are systematically studied to understand the MA behavior and develop advanced techniques for fabricating HEA products. After MA, a single FCC phase is found. After sintering at $900^{\circ}C$, the microstructure has an FCC single phase with an average grain size of $18{\mu}m$. Finally, the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA has a compressive yield strength of 302 MPa.

Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics

  • Gulsan, Mehmet Eren;Mohammedameen, Alaa;Sahmaran, Mustafa;Nis, Anil;Alzeebaree, Radhwan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.199-220
    • /
    • 2018
  • In this study, the effects of sulphuric acid on the mechanical performance and the durability of Engineered Cementitious Composites (ECC) specimens were investigated. The carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP) fabrics were used to evaluate the performances of the confined and unconfined ECC specimens under static and cyclic loading in the acidic environment. In addition, the use of CFRP and BFRP fabrics as a rehabilitation technique was also studied for the specimens exposed to the sulphuric acid environment. The polyvinyl alcohol (PVA) fiber with a fraction of 2% was used in the research. Two different PVA-ECC concretes were produced using low lime fly ash (LCFA) and high lime fly ash (HCFA) with the fly ash-to-OPC ratio of 1.2. Unwrapped PVA-ECC specimens were also produced as a reference concrete and all concrete specimens were continuously immersed in 5% sulphuric acid solution ($H_2SO_4$). The mechanical performance and the durability of specimens were evaluated by means of the visual inspection, weight change, static and cyclic loading, and failure mode. In addition, microscopic changes of the PVA-ECC specimens due to sulphuric acid attack were also assessed using scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that PVA-ECC specimens produced with low lime fly ash (LCFA) showed superior performance than the specimens produced with high lime fly ash (HCFA) in the acidic environment. In addition, confinement of ECC specimens with BFRP and CFRP fabrics significantly improved compressive strength, ductility, and durability of the specimens. PVA-ECC specimens wrapped with carbon FRP fabric showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabric. Both FRP materials can be used as a rehabilitation material in the acidic environment.

Properties and Mock-up Test of Lightweight Foamed Concrete Based on Blast Furnace Slag by Crack Reducing Admixture (팽창성 균열저감제를 이용한 고로슬래그 미분말 기반 경량기포 콘크리트의 특성 및 목업실험)

  • Han, Sang-Yoon;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.507-515
    • /
    • 2017
  • This study is to develop a high quality lightweight foamed concrete that can be applied in the field using EXFG by cracking reducing agent combined with FGD and ALS. First, to increase the volume of foam, the flow and density of the mixture was increased and decreased, respectively. At this time, the effect of substitution ratio of EXFG on fluidity was negligible. The fraction of foam was the highest at EXFG 1%, and the settlement was found to be prevented by the expansion reaction at EXFG 1%. At this time, the ratio of foam was 65%. In the compressive strength, the strengths were similar or decreased when the substitution ratio of EXFG was more than 1%. The apparent density satisfied the KS 0.5 type at the bubble contents was 65%. In case of EXFG substitution, dry shrinkage was decreased by about 10%. As the substitution ratio of EXFG increased, the thermal conductivity increased proportionally.

Mix Design Procedure of Structural Concrete Using Artificial Lightweight Aggregates Produced from Bottom Ash and Dredged Soils (바텀애시 및 준설토 기반의 인공 경량골재를 활용한 구조용 콘크리트의 배합설계 절차)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • The objective of this study is to propose a reliable mixing design procedure of concrete using artificial lightweight aggregate produced from expanded bottom ash and dredged soil. Based on test results obtained from 25 mixes, empirical equations to determine water-to-cement ratio, unit cement content, and replacement level of lightweight fine aggregates were formulated with regard to the targeted performance (compressive strength, dry density, initial slump, and air content) of lightweight aggregate concrete. From the proposed equations and absolute volume mixing concept, unit weight of each ingredient was calculated. The proposed mix design procedure limits the fine aggregate-to-total aggregate ratio by considering the replacement level of lightweight fine aggregates, different to previous approach for expanded fly ash and clay-based lightweight aggregate concrete. Thus, it is expected that the proposed procedure is effectively applied for determining the first trial mixing proportions for the designed requirements of concrete.

Performance Evaluation of Laminated-Tempered Glass as a Component of Noise Barrier on Metro Railway Elevated Bridge Against Train Induced Vibration and Wind Load (지하철 고가교 접합강화유리 방음판의 열차진동 및 풍하중에 대한 성능평가)

  • Kim, Suk-Su;Lee, Ho-Beom;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.30-41
    • /
    • 2017
  • Types of noise barrier installed for noise attenuation are largely divided into noise-absorbing format and noise-proofing format. In these days, installation of transparent noise barrier is general trend to solve problems that hinder sunshine and landscape. Some kinds of transparent boards are used to one of components in noise barriers, but in some cases, less transparency and worse pollution due to yellowing phenomena, and severe material deformation are to harm the urban aesthetics Therefore laminated-tempered glass board in that yellowing phenomena does not occur can be replaced as a transparent one to secure those shortcomings. In this paper, the structural safety against train induced vibration and the resistibility to wind load are analyzed for laminated-tempered glass system as a component of noise barrier installed on Metro railway elevated bridges. Also the appropriateness is evaluated through flexural bending performance test, compressive strength test, modulus of elasticity tests, and impact test for the system or the glass material itself. All of these processes are intended to present the deployment of logic to evaluate the adequacy for the system.

Predicting residual moment capacity of thermally insulated RC beams exposed to fire using artificial neural networks

  • Erdem, Hakan
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.711-716
    • /
    • 2017
  • This paper presents a method using artificial neural networks (ANNs) to predict the residual moment capacity of thermally insulated reinforced concrete (RC) beams exposed to fire. The use of heat resistant insulation material protects concrete beams against the harmful effects of fire. If it is desired to calculate the residual moment capacity of the beams in this state, the determination of the moment capacity of thermally insulated beams exposed to fire involves several consecutive calculations, which is significantly easier when ANNs are used. Beam width, beam effective depth, fire duration, concrete compressive and steel tensile strength, steel area, thermal conductivity of insulation material can influence behavior of RC beams exposed to high temperatures. In this study, a finite difference method was used to calculate the temperature distribution in a cross section of the beam, and temperature distribution, reduction mechanical properties of concrete and reinforcing steel and moment capacity were calculated using existing relations in literature. Data was generated for 336 beams with different beam width ($b_w$), beam account height (h), fire duration (t), mechanical properties of concrete ($f_{cd}$) and reinforcing steel ($f_{yd}$), steel area ($A_s$), insulation material thermal conductivity (kinsulation). Five input parameters ($b_w$, h, $f_{cd}$, $f_{yd}$, $A_s$ and $k_{insulation}$) were used in the ANN to estimate the moment capacity ($M_r$). The trained model allowed the investigation of the effects on the moment capacity of the insulation material and the results indicated that the use of insulation materials with the smallest value of the thermal conductivities used in calculations is effective in protecting the RC beam against fire.

Mechanical Properties and Wear Performance of the Al7075 Composites Reinforced with Bimodal Sized SiC Particles (이종입자 강화 SiC/Al7075 금속복합재료의 압축특성 및 마모특성 연구)

  • Lee, Donghyun;Cho, Seungchan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok;Jo, Ilguk
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.310-315
    • /
    • 2017
  • In this study, we have investigated microstructure, mechanical properties and wear characteristic of aluminum metal matrix composites with a high volume fraction and uniformly dispersed SiC particles which produced by a liquid pressing process. The volume fraction of bimodal SiC/Al7075 composite was 12% higher than that of the monomodal SiC/Al7075 composite and a compressive strength is increased about 200 MPa. As a result of the abrasion test, the wear width and depth of the bimodal SiC/Al7075 composite were $285.1{\mu}m$ and $0.45{\mu}m$, respectively. The coefficient of friction of bimodal SiC/Al7075 was 0.16.