• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.03 seconds

A Study on the Ultimate Strength Behavior according to Modeling Range of the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Park, Sung-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.35-39
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of merchant ship structures. For FHA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

A Study of Characteristics Change of Low-Shrinkage Normal Strength Concrete According to Mixing Factors and curing Temperature (배합요인과 양생온도에 따른 일반강도 초저수축 콘크리트의 특성 변화 연구)

  • Jeong, Jun-Young;Min, Kyung-Hwan;Lee, Dong-Gyu;Choi, Hong-sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.342-347
    • /
    • 2016
  • This study examined the effects of the coarse aggregate maximum size and grading of fine aggregates to acquire the characteristics of very low shrinkage on normal strength concrete mixed in the field. In addition, the shrinkage characteristics of concrete under construction were evaluated in accordance with the curing temperature. The compressive strength and drying shrinkage tests were performed for nine mixing factors composed of the coarse aggregate size (13, 20, and 25 mm), types of fine aggregate (see sand, crushed sand, and blended sand), and curing temperatures (5, 20, and $35^{\circ}C$). To acquire low shrinkage properties under $350{\mu}{\varepsilon}$ strain on normal strength concrete, a 25 mm maximum of coarse aggregate was available, and the grading of fine aggregate affected the shrinkage of concrete. In addition, very low shrinkage properties were acquired in the curing temperature range except cold and hot weather concrete.

Effect of Forming Process and Particle Size on Properties of Porous Silicon Carbide Ceramic Candle Filters (성형공정(成形工程)과 원료입도(原料粒度)가 다공성(多孔性) 탄화규소(炭火硅素) 세라믹 캔들 필터 특성(特性)에 미치는 영향(影響))

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.31-43
    • /
    • 2010
  • To fabricate porous SiC candle filter for filtration facility of the IGCC system, the candle type filter preforms were fabricated by ramming and vacuum extrusion process. A commercially available ${\alpha}$-SiC powders with various particle size were used as starting raw materials, and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as non-clay based inorganic sintering additive. The candle typed preforms by ramming process and vacuum extrusion were sintered at $1400^{\circ}C$ for 2h in air atmosphere. The effect of forming method and particle size of filter matrix on porosity, density, strength (flexural and compressive strength) and microstructure of the sintered porous SiC candle tilters were investigated. The sintered porous SiC filters which were fabricated by ramming process have more higher density and strength than extruded filter in same particle size of the matrix, and its maximum density and 3-point bending strength were $2.00\;g/cm^3$ and 45 MPa, respectively. Also, corrosion test of the sintered candle filter specimens by different forming method was performed at $600^{\circ}C$ for 2400h using IGCC syngas atmosphere for estimation of long-term reliability of the candle filter matrix.

The Inhibition Effect of Alkali-Silica Reaction in Concrete by Pozzolanic Effect of Metakaolin (메타카오린의 포조란 효과에 의한 콘크리트 내 알칼리-실리카 반응 억제 효과)

  • Lee Hyomin;Jun Ssang-Sun;Hwang Jin-Yeon;Jin Chi-Sub;Yoon Jihae;Ok Soo Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.277-288
    • /
    • 2004
  • Alkali-silica reaction (ASR) is a chemical reaction between alkalies in cement and chemically unstable aggregates and causes expansion and cracking of concrete. In the Present study, we studied the effects of metakaolin, which is a newly introduced mineral admixture showing excellent pozzolainc reaction property, on the inhibition of ASR. We prepared mortar-bars of various replacement ratios of metakaolin and conducted alkali-silica reactivity test (ASTM C 1260), compressive strength test and flow test. We also carefully analyzed the mineralogical changes in hydrate cement paste by XRD qualitative analysis. The admixing of metakaolin caused quick pozzolanic reaction and hydration reaction that resulted in a rapid decrease in portlandite content of hydrated cement paste. The expansion by ASR was reduced effectively as metakaolin replaced cement greater than 15%. This resulted in that the amounts of available portlandite decreased to less than 10% in cement paste. It is considered that the inhibition of ASR expansion by admixing of metakaolin was resulted by the combined processes that the formation of deleterious alkali-calcium-silicate gel was inhibited and the penetration of alkali solution into concrete was retarded due to the formation of denser, more homogeneous cement paste caused by pozzolanic effect. Higher early strength (7 days) than normal concrete was developed when the replacement ratios of metakaolin were greater than 15%. And also, late strength (28 days) was far higher than normal concrete for the all the replacement ratios of metakaolin. The development patterns of mechanical strength for metakaolin admixed concretes reflect the rapid pozzolanic reaction and hydration properties of metakaolin.

Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition (60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가)

  • Yoon, Min-Ho;Choe, Gyeong-Cheol;Lee, Tae-Gyu;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using artificial lightweight aggregate which has smaller thermal expansion deformation than granite coarse aggregate. But the research is mostly limited on concrete using clay-based lightweight aggregate. Therefore, in this study, the high temperature compressive strength and elastic modulus, thermal strain and total strain, high temperature creep strain of concrete was evaluated. As a result, remaining rate of high-temperature strength of concrete using lightweight aggregate is higher than concrete with general aggregate and it is determined to be advantageous in terms of structural safety and ensuring high-temperature strength from the result of the total strain by loading and strain of thermal expansion. In addition, in the case of high-temperature creep, concrete shrinkage is increased by rising loading and temperature regardless of the type of aggregate, and concrete using lightweight aggregate shows bigger shrinkage than concrete with a granite-based aggregate. From this result, it is determined to require additional consideration on a high temperature creep strain in case of maintaining high temperature like as duration of a fire although concrete using light weight aggregate is an advantage in reducing the thermal expansion strain of the fire.

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

Inherent Strength Anisotropy of the Shale in Daegu Region (대구지역 셰일 압축강도의 고유이방성에 관한 연구)

  • Lee, Younghuy;Kim, Heedong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.45-51
    • /
    • 2008
  • Triaxial compression tests on anisotropic rock specimens are carried out to investigate the failure strength characteristic of anisotropic rocks. The test core specimens were obtained in Daegu region. Test specimens are rock cores with the 7 different angles of bedding plane. The applied confining pressures were 5, 10, 20, 30, 40 MPa, and the rate of displacement was adopted 0.1%/min to fail the specimen within 5-15 min. The results were analyzed by using the failure criteria for anisotropic rocks proposed by Hoek & Brown (1980) and Jaeger (1960). The results of this study are summerised as follows: The results of inherent anisotropy show the shoulder type of anisotropy, and the effect of anisotropy is reduced as the confining pressure increases. The compressive strength of anisotropic rock shows the highest value at the ${\beta}$ (the angle of bedding plane) = $0^{\circ}$ and $90^{\circ}$ and the lowest value at $30^{\circ}$. The Hoek & Brown failure criterion for anisotropic rocks gives a relatively good agreement with the measured strength in all the range of ${\beta}$ angles, but the theory of Jaeger shows a reasonable agreement only in the range of ${\beta}=15^{\circ}$ and $45^{\circ}$.

  • PDF

An Evaluation of Smeared Zone Due to Mandrel Penetration (맨드렐 관입에 기인하는 스미어 존의 평가)

  • 박영목
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.217-225
    • /
    • 2003
  • An experimental study was conducted to evaluate the smeared effect due to mandrel penetration into soft ground for a vertical drain installation. Laboratory tests were performed to investigate the formation of a smear zone, the variations of strength, and the consolidation characteristics in the disturbed zone using two types(CL at Yangsan site and OH at Pohang site) of soft clayey soils. The smear zone effect was evaluated focusing on mandrel shape, mandrel size, penetration speed, and ground condition. Based on laboratory test results, the diameter of the smear zone$(d_s)$ ranged from 3.08 and 3.92 times that of mandrel$(d_m)$. It was also found that the $(d_s/d_m)$ value of the circular shape of the mandrel is smaller than those of square and rectangular shapes. The value of $(d_s/d_m)$ decreased with larger mandrel size, lower penetration speed in the CL soil, and higher penetration speed in the OH soil. However, natural water content was minimally affected by $(d_s/d_m)$. Respectively, the coefficients of horizontal consolidation$(C_{hs})$ and horizontal Permeability$(K_s)$ of smear zone ranged from 0.81 to 0.87 times, and 0.73 to 0.83 times those of the undisturbed zone. Based on this study, the values of $C_{hs}, K_s$ and unconfined compressive strength$(q_{us})$ in the smear zone were the lowest at close vicinity of the mandrel and increased linearly with distance from the mandrel. Further, the $(q_{us})$ varied from 0.5 to 0.9 times that of the undisturbed zone strength.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.