• Title/Summary/Keyword: compressive strength of standard

Search Result 551, Processing Time 0.03 seconds

Fire Resistance Performance of Fiber-Cocktail Reinforced 50 MPa High Strength Concrete (섬유혼입된 50 MPa 고강도 콘크리트의 내화성능)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Park, Jong-Heon
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • After applying the fiber cocktail(polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of 50 MP, the fire test was carried out on specimens in order to evaluate the fire resistance performance, such as possible explosive spalling, temperature distributions of concrete and rebar. According to an enforcement ordinance, four column specimens were exposed to the fire for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed. The required minimum quantity of polypropylene to prevent explosive spalling is more than 0.57 kg per unit concrete volume. The comparing test results from temperature distributions of concrete and rebar has found that the difference of fiber quantity is insignificant.

  • PDF

The Characteristics of Mortar According to the Water Cement Ratio and Mudflats Replacement Ratio (물-시멘트비 및 갯벌 치환율에 따른 모르타르의 특성)

  • Yang, Seong-Hwan;Lee, Heung-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This research analyzes the properties of mortar following the rise in water-cement ratio and applicability as an eco-friendly construction supply by using the mudflats of a dredged arena as a substitute for aggregate. The results of a experiment of the flow showed that the flow value decreases as the amount of mudflats increases. A test for chloride content showed that the chloride content increases with the amount of mudflats. In the compression of specimen mixed with mudflat and the testing of tensile strength, the strength weakened as the addition ratio of mudflats rose. However, with 14-day strength as the standard, most specimen showed more strength than the plain, and 14-day strength was higher than 28-day strength. It appears to be experimental error in the mixing process from the viscosity and cohesion of mudflats, and it is considered that there will be a need for an experiment on mixing methods of mudflats in the future. The compressive strength of this research was the strongest with 70% in water-cement ratio, and the tensile strength was strongest with 80% in water-cement ratio. In the evaluation of surface analysis, 70% water-cement ratio, which is finest in strength, mixing, and compactness, was selected to analyze the roughness of the surface, and the results showed that the surface became smoother as the addition ratio of mudflats increases. In conclusion, it appears that 70% water-cement ratio is the optimal mixing ratio for mortar and 10 to 30% addition ratio of mudflats the optimal ratio. It also appears that the application of interior finishing material like bricks and tiles and interior plastering material using the mudflats are possible.

A Study on Treatment and Recycling of Waste Fluid Sand from the Fluidized Bed Incinerator (유동상식 소각로에서 발생되는 폐유동사(廢流動床) 처리 및 재활용 방안)

  • Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1015-1024
    • /
    • 2020
  • Using the waste(sand wastr and boiler ash) in fluidized bed inciverator, lightweight aggregate concrete was produced and a recycling plan was prepated. The first, the result of the leaching test shows that the waste fluid sand and boiler ash did not exceed the effluent standard. This indicates that there is no harmful effect for recycling. The second, in the lightweight aggregate test using waste fluid sand and boiler ash, the sample that combined cement, waste fluid sand, and sand showed the highest compressive strength, and the mix proportion was 10: 7: 3. Lightweight aggregate concrete that combined cement, waste fluid sand, boiler ash, and sand had a low compressive strength by and large. The third, the same results were identified in the relation between the content of SiO2 and that of Na2O. As the SiO2 content is lowered, the overall viscosity and plasticity of the concrete also decrease, which is not a good condition to form concrete. As for Na2O, as the content increases, the viscosity of the sample and the viscosity of the cement are remarkably lowered, and the strength of the finished concrete is lowered. Therefore, it was concluded that the higher the content of SiO2 and the lower the content of Na2O, the more suitable it is to mix with cement to produce concrete. Fourth, from the fluidized bed incinerator currently operated by company A in city B, a total of 14,188 tons/year were discharged as of 2016, including 8,355 tons/year of bottom ash (including waste fluid sand) and 5,853 tons/year of boiler ash. The cost for landfill bottom ash and boiler ash discharged is 51,000 won/ton, and the total annual landfill cost is 723,588,000 won/ year. Assuming that the landfill tax to be applied from the year 2018 is about 10,000 won/ton, and if there is no reduction in waste disposal charge, an additional landfill tax of 141,880,000 won/year will be imposed. Consequently, the sum total of the annual landfill cost will be 865,468,000 won/year. Therefore, if the entire amount is used for recycling, the annual savings of about 8.7 billion won can be expected.

A Study on Preventive Methods Against Concrete Corrosion by Sea Water of the of West Sea (서해조수에 의한 콘크리트의 부식 방지법에 관한 연구)

  • 고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2622-2633
    • /
    • 1972
  • This study was attempted in order to search for phyosical properties on various mix designs of concrete as ne of studies relating top revention against corrosion by action of sea water in the West Sea. In this study, as concerete mix design, fly ash, pozzolith and vinsolresin were used as admixtures for normal portland cement respectively, and pozzolan cement and normal cement were also used for each plain concrete. Concrete specimens were made and cured in accordance with the Korean Standard Specifications for concrete. In thetest, compressive strengths of the specimens were measured at the following ages; 7-day, 28-days and 3-months. Absorption test was made by immersing the specimens in water kept at boiling temperature for 5 hours. The results obtained from the tests are summarized as follows; 1. The use of fly ash as an admixture in mix design of concrete, has an effect on compressive strength at each age. But it is actually not effective on absorption by concrete, as the result of the fly ash concrete is almost the same at that of ordinary plain concrete. 2. The use of pozzolith as an admixture in mix design of concrete, has an effect on both of compressive strength at each age and absorption rate. The pozzolith is more effective than vinsol resin, relating to improvement for physical proreties of concrete. 3. The use of vinsol resin as an admixture in mix design of concrete, has also an effect on both of compressive strength at each age and absorption rate. As the above fact, effectiveness of the vinsol resin is some what lower than pozzolith, as far as physical properties of the concrete are concerned. 4. Plain concrete used pozzolan cement only is the most effective on both of strength at each age and absorption rate in this study. The pozzolan cement is characteristic of higher strenth as the age is later. 5. Relationship between compreessive strengths and absorption rates of the concrete is shown by a different regression line dependingon ages. The gradient of the regression line is steeper as the age is later. 6. Throught physical test, it may be expected that the use of pozzolith and vinsol resinas asan admixture respectively will be better resistant than fly ash or ordinary plain concrete and that plain pozzolan concrete will also be the best resistant to action of sea water due to improvement of theirphysical properties.

  • PDF

An Experimental Study on the Physical and Mechanical Properties of Concrete Using Recycled Sand (순환잔골재를 활용한 콘크리트의 물리·역학적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Lee, Seung-Yeop;Kwon, Gu-Hyuk;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.359-365
    • /
    • 2017
  • This study examined concrete characteristics depending on the replacement ratio of recycled fine aggregates, which suits the KS F 2573 concrete recycled aggregate standard. As physical properties, slump, air content, changes in the elapse of time and compressive strength were studied in order to provide basic data for activation of recycled fine aggregate recycling. As a result of experimenting recycled fine aggregate concrete, the increase in the replacement ratio of recycled aggregates led to the increase in slump and air content. Also, when the replacement ratio of recycled fine aggregates was 30%, it was judged that there was no problem with constructability. When the replacement ratio was 30%, recycled fine aggregate concrete had a similar tendency to natural aggregate concrete at a compressive strength of 24MPa. When the replacement ratio was 30%, at a target strength of 24MPa, recycled fine aggregate concrete had the same physical characteristics as natural aggregate concrete. This means that a replacement ratio of 30% is appropriate for replacement of recycled fine aggregates. In future, there will be a need to improve the quality of recycled fine aggregates for activating the use of recycled fine aggregates and further research will have to evaluate physical properties of recycled fine aggregate concrete using improved recycled fine aggregates.

Quality Evaluation and Mix Proportion of Antiwashout Underwater Concrete with Mineral Admixture (광물질 혼화재료를 사용한 수중불분리성 콘크리트의 배합 및 품질평가 방안 검토)

  • Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.679-686
    • /
    • 2014
  • In this research, the mix proportion of the antiwashout underwater concrete with the mineral admixture was evaluated. It can reduce the amount used of the antiwashout admixture (hereinafter referred to as "AWA") and satisfy the properties of concrete. In addition, the review for the difference of the test and practical affairs were conducted. Optimized unit quantity of water of antiwashout underwater concrete and the amount used of AWA was revealed by $190kg/m^3$, 0.9%/W, respectively. In particularly, the mix design is reduced by 5% than the W/B of target strength even though the W and AWA reduced. Therefore, it will have the economical feasibility and qualities including the material separation, resistance characteristic and compressive strength, and etc. The stable value was shown in 1 point of minute passed in the measurement of the turbidity amounts using the turbidimeter after the checker insertion. However, it needs to be reviewed for the interrelationship between turbidity measuring machine and KCI-AD102 standard method. There were no significant differences of compressive strength of specimens in the water depending on the production methods.

Environmental Impact Assessment of Different Concrete Mixture Proportions according to Domestic Region and Season (국내의 지역 및 계절에 따른 콘크리트 배합별 환경영향평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Jung, Yeon-Back
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2014
  • This study analyzed a comprehensive database including 6331 ready-mixed concrete plant mixtures to quantitatively assess the environmental impact of concrete under mixture proportions variable according to the domestic region and season. The environmental impact indicator includes global warming, photochemical oxidant creation, abiotic resource depletion, acidification, eutrophication and human toxicity, which are determined from categorization, characterization, normalization and weighting process based on Korea lifecycle inventories. The determined environmental impact indicator was also normalized by concrete compressive strength ($f_{ck}$), which is defined as impact index, to calculate the environmental impact per unit strength of 1 MPa. The most common compressive strength of concrete used in the country is estimated to be 24 MPa and 27 MPa. For $f_{ct}$ of 24 MPa, the lowest environmental impact indicator is observed in Ulsan, whereas the highest region is Gwangju and Daegu. This difference according to domestic region is primarily resulted from by the replacement of different supplementary cementitious materials. Furthermore, the impact index of concrete with $f_{ck}$ of 24 MPa is higher by approximately 5% at wintertime than at summertime and standard season. The impact index gradually decreases with the increase of $f_{ck}$ up to 35 MPa, beyond which it remains constant.

The Properties of Permeability and Freeze-Thaw Resistance of Water-Permeable Paving Brick Using Wastes (폐기물을 이용한 투수블록의 투수성 및 동결융해저항 특성)

  • 신대용;한상목;김경남;이현종
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • Porous ceramics for water-permeable paving brick was prepared by the sintering of mixed materials comprising of sewage sludge ash, waste porcelain fragment, waste glaze and low-grade clay at 1,000$^{\circ}C$ for 2 h, and the physical $.$mechanical properties, the permeability and the freeze-thaw resistance of specimens with preparation parameters were investigated. The physical mechanical properties were increased in specimens while porosity and permeability were decreased with increasing sewage sludge ash content and sintering temperature on the properties of specimens showed the opposite results. The bulk density, porosity, compressive strength and permeability (passed charge) of 30A60F specimens with 30 wt% of sewage sludge ash content, waste porcelain fragment size with 1∼2 mm and sintered at 1,000$^{\circ}C$ for 2 h were 2.17, 46.2%, 221 kgf/$\textrm{cm}^2$ and 3,150 coulombs, respectively. The permeability was increased with increasing waste porcelain fragment size, however compressive strength was decreased. The freeze-thaw resistance of 30A60F specimen with 1∼2 mm of fragment size was superior to that of the other specimens. The 30A60F specimens can be used for the water-permeable paving brick with the high permeability and adequate strength. The heavy metals included in the all specimens showed lower than the standard level.

Application of Non-Alkaline Silica Sol Grouting Method Considering the Eco-Friendliness (친환경 비알칼리성 실리카졸 차수공법의 적용)

  • Jang, Yonggu;Kim, Sugyum;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.37-45
    • /
    • 2016
  • This study analyzes the environmental and durability problems of traditional (LW) grouting method. And the proposed method was compared to the others effects by analyzing the in-situ applicability and effect of performance of the method using the silica sol. This study analyzed the eco-friendly, effects of high strength silica sol through laboratory tests. The effects of the construction process were identified through the field tests. The compressive strength was increased by 1.3 times compared to the LW method and the shrinkage is 3~8 times less than that of LW method with water glass. No toxicity, which could affect soil contamination. In particular, it was confirmed that the Toxicity fish also survived with little pH change in the concentration tank. Also it confirmed the construction effects through field test. Field tests are a standard penetration test, permeability test, LLT, BST. Permeability was reduced to $1{\times}10^{-5{\sim}-6}cm/sec$.

Study on Development of Export Packaging for Fresh Melon (신선 멜론의 수출포장개발에 관한 연구)

  • Lee, Myung-Hoon;Jung, Jun-Jae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.83-91
    • /
    • 2009
  • It is very difficult to export the fresh agricultural products to long distance countries such as USA and EU without any damage. Fresh products exporting would overcome very severe conditions such as hot and cold weather changes, heavy vibrations with rolling and pitching during the target distribution period, therefore, the packaging needs the immobility of products in the container and the keeping its quality by packaging materials or methods under any surrounding environments, especially. The physical strength of outer box should be designated according to its own characteristics for agricultural product packaging. Packaging dimension which would be fit to standard pallet is also very important factor to reduce the distribution cost. There have been many agricultural products researches for export packaging to the USA so far. However they have never got desirable results which enough to apply it in real. The main purpose of this research is to develop optimum compressive strength and optimum dimension of corrugated fiberboard box which would be used to USA export packaging of fresh melon as well as Japan.

  • PDF