• 제목/요약/키워드: compressive strength of mortar

검색결과 1,081건 처리시간 0.022초

산업부산물의 치환율에 따른 증기양생 모르타르의 압축강도 특성 (Compressive Strength Characteristics of Steam Curing Mortar according to Substitution Rate of Industrial By-Products )

  • 신경수;황선경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.177-178
    • /
    • 2023
  • This study evaluated the compressive strength characteristics of steam curing mortar according to the substitution rate of industrial by-products, and showed a tendency to increase the compressive strength when gypsum was substituted up to 30%.

  • PDF

Compressive strength behaviour of low-strength hollow concrete block masonry prisms

  • Syiemiong, Hopeful;Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.689-699
    • /
    • 2021
  • The present study aims to understand the behaviour of low-strength masonry prisms constructed with locally-produced low-strength hollow concrete blocks. Compression tests were conducted on masonry prisms constructed with three different mortar grades of cement-sand ratios of 1:3, 1:4.5 and 1:6 representing strong, moderately strong and weak mortar. Stress-strain curves were generated from the test results for the masonry prisms. The hollow concrete masonry units employed in this study are some of the weakest as compared to other masonry units employed by other researchers. The compressive strengths for masonry prisms with mortar grades 1:3, 1:4.5 and 1:6 are 2.21 MPa, 2.19 MPa and 2.25 MPa respectively. The results indicate that the masonry compressive strength of such low-strength hollow concrete block masonry prisms is not influenced by the mortar strength. Simple relationships to estimate the modulus of elasticity and compressive strength of masonry prisms is also proposed.

시멘트.몰탈의 압축강도 개선을 위한 고강도 혼화재의 제조 및 적용특성 (Manufacture and Application Properties of High Strength Admixture for Improving Compressive Strength of Cement and Mortar)

  • 노재성;김도수;임채영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.83-88
    • /
    • 1998
  • II-anhydrite, slag, and fly ash produced as industrial by-product were reutilized for the manufacture of high strength admixtures for cement and concrete. The effects of these admixtures on the compressive strength of cement mortar and concrete were examined with those of domestic admixture. At the condition mortar and concrete. Especially, adding of II-anhydrite was very effective for the increasing of compressive strength. Therefore it is possible that these admixture as a high strength admixture apply to cement and concrete.

  • PDF

스테인레스 스틸 슬래그의 분말도에 따른 모르터의 물성에 관한 기초적 연구 (A Fundamental Study on Properties of Mortar Following the Stainless Steel Slag of Fineness)

  • 이희두;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.69-74
    • /
    • 2002
  • The following results are achieved from a mortar flow test depending on stainless steel slag fineness, replacement ratio, and a research on material age compressive strength, strength activity index. 1. Flow is proportional to the stainless steel slag fineness within the limits of 4000~8000$\textrm{cm}^2$/g, but in the case of fineness 20000$\textrm{cm}^2$/g flow decreases at all conditions except the case of replacement ratio 10%. 2. As stainless steel slag replacement ratio increases, Mortar of flow somewhat decreases. 3. As stainless steel slag blends, compressive strength decreases, but in proportion to the increase of age, compressive strength increases. 4. As stainless steel slag replacement ratio, compressive strength decreases. 5. In the case of stainless steel slag fineness 6000$\textrm{cm}^2$/g and 20.000$\textrm{cm}^2$/g, compressive strength of revelation ratio has the maximum value when it's replacement ratio is 10%.

  • PDF

고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구 (A study on the mechanical properties of the polymer cement mortar in a high temperature region)

  • 윤웅기;서동구;권영진;김형준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF

석고가 첨가된 슬래그 기반 알카리활성 모르터의 압축강도 및 건조수축 변형률 (Compressive Strength and Shrinkage Strain of Slag-Based Alkali-Activated Mortar with Gypsum)

  • 양근혁;심재일
    • 한국건축시공학회지
    • /
    • 제8권1호
    • /
    • pp.57-62
    • /
    • 2008
  • Twelve mortars were mixed and tested to explore the effect of gypsum on the compressive strength development and shrinkage strain of alkali-activated mortars. Powder typed sodium silicate and ground granulated blast-furnace slag were employed as alkaline activator and source material, respectively, to produce cementless mortar. The main variables investigated were alkali quality coefficient combining the concentration of activator and main compositions in source material, and the adding amount of gypsum ranged between 1 and 5% with respect to the weight of binder. Initial flow, compressive strength development, modulus of rupture, and shrinkage strain behavior of mortar specimens were measured. In addition, the hydration production of alkali-activated pastes with gypsum was traced using X-ray diffraction and energy-dispersive X-ray analysis combined with scanning electron microscope image. Test results showed that the initial flow of slag-based alkali-activated mortar was little influenced by the adding amount of gypsum. On the other hand, the effect of gypsum on the compressive strength of mortar specimens was dependent on the alkali quality coefficient, indicating that the compressive strength increased with the increase of the adding amount of gypsum until a certain limit, beyond which the strength decreased slowly. Shrinkage strain of mortar tested was little influenced by the adding amount of gypsum because no ettringite as hydration product was generated. However, the adding of gypsum had a beneficial effect on reducing the microcrack in the alkali-activated mortar.

Strength Characteristics of Unsaturated Polyester Resin Mortar using Recycled Fine Aggregates

  • Kim, Wha-Jung;Choi, Young-Jun;Jun, Joo-Ho;Kim, Yong-Bae
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.89-97
    • /
    • 1999
  • The purpose of this research is to investigate the utilization of recycled fine aggregates as a material to apply to a building finished walls or as a decorating material in combination with a polymer. The strengths of two resin mortars using recycled fine aggregates and natural fine aggregates was made. In order to improve the workability and the strength of the resin mortar with recycled fine aggregates, partial replacement of recycled fine aggregates with natural ones was made with the application of various type of fillers. The results, it show that the compressive strength and flexural strength of resin mortar using the recycled fine aggregates were about 70% to 100% of those of resin mortar using natural fine aggregates. It was enough to assure the utilization of the recycled fine aggregates as a material for the production of resin mortar. From the result of partial replacement of recycled fine aggregates with natural ones, the compressive strength was Increased from 5% to 15% and the flexural strength was much as 5% to 20% as a result of 70% substitution It was also found that the use of garnet powder shows a similar tendency in the compressive strength and slag powder does in the flexural strength and tensile strength.

  • PDF

천연무기광물계 구체방수재를 사용한 모르타르의 수밀성과 내구성비교 (Comparison of watertightness and durability of mortar with waterproof admixture for concrete)

  • 김재영;신진용;채은진;서정권
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.65-68
    • /
    • 2006
  • In this study, comparison of setting time, compressive strength, watertightness and durability of between reference mortar with mortar using waterproof admixtures based on natural inorganic minerals. Test results shows that waterproof admixtures does not change setting time of mortar, but strongly improve compressive strength, permeability, absorption and durability of mortar. Especially early strength of mortar increased about 40% of reference.

  • PDF

황산으로 중화시킨 액상레드머드 첨가 슬래그시멘트 모르타르의 특성 (Properties of Slag Cement Mortar with Liquid Red Mud Neutralized with Sulfuric Acid)

  • 김상진;강석표
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.123-124
    • /
    • 2022
  • In this paper, the characteristics of slag cement mortar added with neutralized liquid red mud with sulfuric acid and reduced pH were reviewed to improve the strength degradation of cement concrete added with liquid red mud. As a result, in the case of compressive strength up to 7 days, the strength of the cement mortar added with liquid red mud tends to increase compared to Plain. This shows that adding liquid red mud to cement mortar tends to increase the initial age strength, and the compressive strength on the 28th shows 74% of Plain when adding non-neutralized liquid red mud and 89% when adding sulfate neutralized red mud. Therefore, it is judged that the compression strength is improved by neutralizing the liquid red mud with sulfuric acid.

  • PDF

고로슬래그 미분말과 플라이애시를 사용한 비소성 시멘트 모르타르의 촉진 탄산화에 따른 압축 강도 특성 (Properties of Compressive Strength after Accelerated Carbonation of Non-Sintered Cement Mortar Using Blast Furnace Slag and Fly Ash)

  • 류지수;나형원;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.297-298
    • /
    • 2023
  • In the concrete industry, efforts are being made to reduce CO2 emissions, and technologies that collect, store, and utilize CO2 have recently been studied. This study analyzed the change in compressive strength after the accelerated carbonation test of Non-Sintered Cement(NSC) mortar. Type C Fly Ash and Type F Fly Ash were mixed in a 1:1 ratio and then mixed with Blast Furnace Slag fine powder to produce NSC. The mortar produced was cured underwater until the target age. In addition, an accelerated carbonation test was conducted under the condition of a concentration of 5 (±1.0%) of CO2 gas for 14 days. The mortar compressive strength was measured before and after 14 days of accelerated carbonation test based on the 7th and 28th days of age. As a result of the experiment, the compressive strength was improved in all binder. In general, the compressive strength of NSC mortar subjected to the accelerated carbonation test was similar to that of Ordinary Portland Cement(OPC) mortar not subjected to the accelerated carbonation test.

  • PDF