• 제목/요약/키워드: compressive strength of mortar

검색결과 1,078건 처리시간 0.028초

성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향 (The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting)

  • 오무영;김준희
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

소성볏짚을 혼입한 모르타르의 압축강도 특성에 관한 연구 (A Study on the Compressive Strength Property of Mortar using Rice Straw Ash)

  • 정의창;신상엽;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.265-266
    • /
    • 2012
  • The purpose of this study was to investigate the compressive strength property into mortar using rice straw ash. In an effort to evaluate the effects of rice straw ash firing temperatures on compressive strength properties of mortar, a change in the components of rice straw ash was observed according to firing temperatures, and compressive strength of mortar and X.R.F was measured. As a results, As the mortar with a mixture ratio of rice straw ash up to 15% was found to have a compressive strength superior to that of plain mortar.

  • PDF

에폭시 수지 모르터의 강도 특성 (Strength Characteristics of Epoxy Resin Mortar)

  • 정규석;강신업
    • 한국농공학회지
    • /
    • 제24권3호
    • /
    • pp.92-99
    • /
    • 1982
  • The objective of this study was to investigate the compressive and bending strength characteristics of epoxy resin mortar, which is still in an early stage of its use and study in Korea. The results obtained are summarized as follows; 1. The compressive strengths of epoxy resin mortar after 1 day, 2 days and 3 days were gained 87%, 91% and 95%, respectively, in view of that of mortar at the age of 7 days. This result showed that the initial compressive strength within 1 day was very high. 2. The highest compressive strength of epoxy resin mortar was 914 kg/cm2 at the point of having the mixing ratio of one to two. It reached up to 3.7 times that of the normal portland cement mortar at the age of 28 days. 3. The bending strengths of epoxy resin mortar after 1 day, 2 days and 3 days came up to 88%, 93% and 97%, respectively, in comparing that of mortar at the age of 7 days. It was expressed to be simielar to the tendency of compressive strength. 4. The highest bending strength of epoxy resin mortar was 384 kg/cm2 at mixing ratio of one to two. It came up to as much as 6.5 times in comparing with that of the normal portland cement mortar at the age of 28 days. Therefore, the epoxy resin mortar would be effective for promoting the bending strength of structural members. 5. The regression equation between compressive and bending strength was obtained as follows; oo~=0.391 oc+27.54 (r=0.99) And the estimated value of bending strength was corresponded to about 44 per cent in comparing with that of the compressive strength.

  • PDF

양생 조건이 바닥용 건조 모르타르의 압축강도에 미치는 영향 (Effect of Curing Conditions on Compressive Strength of Dry Mortar for Floor)

  • 정용;김두혁;박창환;조성현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.377-378
    • /
    • 2023
  • This study examined the effect of curing conditions on the compressive strength of dry mortar for floor. The compressive strength according to the relative humidity during curing was compared, and the influence of expansive additives on compressive strength under water curing was reviewed. As a result, low relative humidity conditions during curing was not effective in improving the compressive strength of dry mortar for floor, and it was judged that the continuous hydration reaction insufficient due to lack of the moisture supply. In order to improve compressive strength, high relative humidity maintenance was found to be an important factor. However, under water curing conditions, the compressive strength has decreased as a result of continuous volume expansion due to the use of the expansive additives.

  • PDF

무기안료가 시멘트모르타르의 압축강도와 흡수율에 미치는 영향 (The Influence of Inorganic Pigments on the Compressive Strength and Absorption of Cement Mortars)

  • 송혁;이재용;고성석
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.104-111
    • /
    • 2004
  • The aim of this study was to investigate the influence of inorganic pigments on the physical properties of cement mortar. For this purpose, the compressive strength and absorption test were carried out on cement mortar imxed with inorganic pigments by changing the proportion of cement mortar, water-cement ratio, and ratio of pigment. The result of this study can be summarized as follows: the compressive strength of colored mortar rapidely increased in red and yellow mortar, as the mix ratio of pigment increased. In case of green and black mortar, however, the compressive strength decresed as the mix ratio incresed. In case of red and yellow mortar, the absorption of colored mortar increased as the mixing ratio increased, if the mean particle diameter of the pigment is small. In case of green and black mortar, the absorption ratio decreased as the mix ratio increased. After investigating the overall physical properties of colored mortar, it was confirmed that the proper mix ratio of pigment securing the properties of colored mortar was below 6% of the weight of the cement to be used.

기능수가 모르타르의 압축강도에 미치는 영향 (The Effect of Functional Water on the compressive strength of Mortar)

  • 한정섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2002
  • To study the effect of functional water on the compressive strength of mortar, city water was changed to functional water through ceramics treatment. The change of characteristics of water was measured with $O^{17}$ NMR and Killian Camera. The compressive strength of mortar was measured with various curing conditions. The test results show that by the ceramics treatment the characteristics of city water was changed. At 28 days under curing condition, the compressive strength of mortar which was mix-proportioned with treated water was increased about 22 % than that of mortar which was mix-proportioned with untreated city water.

  • PDF

Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars

  • Asteris, Panagiotis G.;Apostolopoulou, Maria;Skentou, Athanasia D.;Moropoulou, Antonia
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.329-345
    • /
    • 2019
  • Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method, available in the literature, which can reliably predict mortar strength based on its mix components. This limitation is due to the highly nonlinear relation between the mortar's compressive strength and the mixed components. In this paper, the application of artificial neural networks for predicting the compressive strength of mortars has been investigated. Specifically, surrogate models (such as artificial neural network models) have been used for the prediction of the compressive strength of mortars (based on experimental data available in the literature). Furthermore, compressive strength maps are presented for the first time, aiming to facilitate mortar mix design. The comparison of the derived results with the experimental findings demonstrates the ability of artificial neural networks to approximate the compressive strength of mortars in a reliable and robust manner.

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

KS 규격과 ISO 규격에 따른 시멘트 모르터의 강도특성 (Properties of the Strength of the Cement Mortar Depending on the KS and ISO)

  • 김선미;최정호;서상교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.239-244
    • /
    • 2001
  • Opens the construction market recently, the construction industry of Korea has faced up to the barrier of globalism, and has been enforced to follow the various global standards in many aspects. Accordingly, it is expected that the test method related to the cement and concrete will be changed to conform to the international standards in Korea. Therefore, in this study, the strength tests are executed for the cement mortars, made by KS and ISO standards respectively, and then obtains such results. 1) The flow of the cement mortar according to ISO is about 8% higher ,than that of KS. 2) The flexural strength of the cement mortar according to ISO is about 10~20% higher than that of KS, and the compressive strength is about 30% higher. 3) The compressive strength relation between the cement mortars of KS and ISO may be expressed in the first-order recurrence formula as follows: Y = 1.33X - 8 In which X is the compressive strength(kgf/$\textrm{cm}^2$) of the mortar according to KS and Y is the compressive strength(kgf/$\textrm{cm}^2$) of the mortar according to ISO.

  • PDF

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar

  • Park, Sung-Jin;Park, Yu-Mi;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.782-788
    • /
    • 2010
  • Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.