• 제목/요약/키워드: compressive strength loss

검색결과 299건 처리시간 0.027초

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

골판지 원지의 건조효율 증대를 위한 목분의 이용 (Utilization of Wood Flour for Drying Energy Saving of Old Corrugated Container)

  • 서영범;정재권;이영호;성용주
    • 펄프종이기술
    • /
    • 제46권6호
    • /
    • pp.8-15
    • /
    • 2014
  • The increase of wet web solid content in wet pressing will save drying energy greatly. We applied wood flours as spacers to increase the old corrugated container (OCC) solid contents in wet pressing. The mixed furnish of OCC and wood flours of 3-5% (wt/wt) increased bulk and drainage rate, and by increasing wet pressing pressure, its solid content started to be higher than 100% OCC furnish at more than 50% solid content level. Addition of cationic starch and drainage aid to the mixed furnish increased solid content further up to around 2%. Cationic starch addition compensated or exceeded the loss of tensile and compressive strength caused by the addition of wood flour, but drainage aid did not. Cationic starch also improved the stretch of the OCC, which could mitigate cracking at folding in boxboard.

황산염침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능 평가 (Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack)

  • 이승태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권4호
    • /
    • pp.121-128
    • /
    • 2007
  • 본 연구는 실리카 퓸을 사용한 시멘트 경화체의 황산염침식 저항성을 평가하기 위하여 수행되었다. 실리카 퓸을 시멘트 중량에 대하여 0, 5, 10 및 15%의 4단계로 대체한 모르타르 및 0 및 10%의 2단계로 대체한 페이스트를 제조하여 침지실험을 실시하였다. 황산나트륨용액에 510일 동안 모르타르 및 페이스트를 침지한 후 재령별 외관조사, 팽창, 압축강도 감소율 및 공극특성을 조사한 결과, 실리카 퓸 대체율에 관계없이 실리카 퓸을 대체한 시멘트 경화체는 황산염침식에 대하여 저항성이 매우 우수하였으나, 보통포틀랜드시멘트 모르타르 및 페이스트는 황산염침식에 의한 극심한 성능저하 현상이 관찰되었다.

분말사출성형에 의한 WC-Co 계 milling insert 제조 (WC-Co Milling Inserts Manufactured by Powder Injection Molding)

  • 성환진
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

저발열형 시멘트 콘크리트의 염소이온 침투$\cdot$확산에 대한 저항성 (The Resistance of Penetrability and Diffusion of Chloride Ion in Blended Low Heat Type Cement Concrete)

  • 문한영;신화철
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.31-41
    • /
    • 1999
  • Blended Low Heat type cement is ground granulated blast furnace slag and fly ash mixed ternary with ordinary portland cement. From the viewpoint of X-ray patterns of domestic LHC, the main components of cement such as $C_2$S, $C_3$A, $C_3$S are considerably reduced. Therefore the heat evolution of LHC paste is 42cal/g lower than of OPC paste. At early age, the compressive strength development of LHC concrete is delayed, but the slump loss ratio of fresh concrete is reduced more than 20% with elapsed time. The penetrability of LHC is lower than that of OPC by 1/7.8 with the penetrability of chloride ion into the concrete until the age of 120 days. And the PD Index value of LHC is 0.44$\times$10-6 $\textrm{cm}^2$/s, which indicates only 39.3% of OPC. From the Mercury Intrusion Porosimetry test of cement past, we know that the pore size of LHC is more dense than that of OPC by production of C-S-H.

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Sgorlon, Juliana Guerra;Tavares, Celia Regina Granhen;Franco, Janaina de Melo
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.337-353
    • /
    • 2014
  • The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.

Mechanical Behavior of Treated Timber Boardwalk Decks under Cyclic Moisture Changes

  • LIU, Jian;JI, Yiling;LU, Jiaming;LI, Zhi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권1호
    • /
    • pp.68-80
    • /
    • 2022
  • Timber boardwalk decks are widely installed in parks and scenic areas to provide pedestrians an elevated footpath as well as harmony with the surrounding natural scene. In order to extend the lifespan of boardwalks in the outdoor environment, industrially treated pine timber, such as Pinus sylvestris, is often adopted. However, accidents of pedestrians injured by damaged boardwalk decks have been constantly reported. Therefore, the mechanical behavior of two different types of treated timber was examined in this study under repeated wetting and drying. An increasing number of radial cracks appeared with increasing length and width as more cycles were performed. A loss of more than 40% of the screw withdrawal capacity was observed in both end grain and face grain for the two types of timber after twelve accelerated wet-dry cycles, which coincides with the observation of damaged timber boardwalks in the field investigation. At the same time, it was found that both the compressive and the flexural strength was not sensitive to the wet-dry cycles especially at large cycle numbers.

단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성 (The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials)

  • 박영신;강민기;김정호;지석원;전현규
    • 한국건축시공학회지
    • /
    • 제16권1호
    • /
    • pp.9-15
    • /
    • 2016
  • 건물에서 에너지 손실이 가장 큰 부위는 외피로서, 이 부분의 에너지 손실을 감소하기 위한 연구가 활발히 진행되고 있으나 이는 대부분 창호 및 단열재를 사용한 연구이며 건물 외피의 70% 이상을 차지하고 있는 콘크리트에 대한 연구는 미미한 실정이다. 따라서 건물의 에너지 손실을 최소화하기 위해서는 콘크리트 자체에서 단열성능을 확보할 수 있어야 하며 이에 대한 연구가 필요하다. 이에 본 연구에서는 보통콘크리트보다 열전도율을 2배 이상 개선시킨 구조용 단열성능향상 콘크리트 개발 연구의 일환으로 마이크로기포제, 규조토 미분말, 경량골재를 사용하였으며, 콘크리트 내부공극을 다량확보하여 열전도율을 낮추고자 하였다. 실험결과, 슬럼프와 공기량은 양호한 결과를 나타내었으며, 단위용적질량에서는 마이크로기포제를 사용한 모든 배합에서 보통콘크리트보다 14.3~35.1 % 감소된 결과를 나타내었고 압축강도는 단열성능 향상 재료를 사용하여 다소 감소하는 경향을 나타내었으나 본 실험의 목표 강도(24MPa)를 모두 만족하였다. 또한 열전도율은 보통콘크리트 대비 최대 2배 이상 개선된 결과를 나타내었다.

부산 ${\cdot}$ 경남지역 주강 공장의 $CO_2$ 주형 고사의 발생실태와 재생에 관한 연구 (Investigation of Reclamation for Waste $CO_2$ Mold Sand of Steel Foundries in Busan and Gyeong Area)

  • 최준오;김민섭;최인석;천병욱;최창옥
    • 한국주조공학회지
    • /
    • 제22권3호
    • /
    • pp.121-129
    • /
    • 2002
  • According to the investigation of waste $CO_2$ molding sand in the 15 steel foundries in Busan and Gyeong area, about 1 ton of waste $CO_2$ molding sand per ton of steel castings production was produced In order to reduce amount of $Na_2O$, Loss of Boiling (L.O.B), Loss of Ignition (L.O.I), Conductivity and PH which are present in the waste $CO_2$ molding sand below the reclamation effect, more than 50% of elimination for reclamation was required. It was found that the waste $CO_2$ molding sand does not contain a harmful component designated by industrial waste materials. Reclamation of the waste $CO_2$ molding sand was practically achieved by an abrasive-dry reclamation process. According to bench time of the sodium silicate-bonded $CO_2$ molding sand, reduction of compressive strength and surface stability index(S.S.I) become slowdown. Therefore, the reclaimed sand could be allowed the reuse of molding sand in $CO_2$ molding process including core sand.

다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성 (The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions)

  • 윤성원;이범재
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.815-821
    • /
    • 2005
  • 현재 콘크리트 산업에서 주로 사용되고 있는 3가지 화학 혼화제로서 변경 리그닌계(LS), 나프탈렌계(SNF) 및 멜라민계(SMF) 혼화제가 널리 사용되고 있다. 본 연구에서는 SMF계 고유동화제의 합성과정을 수산화메틸화 반응(Hydroxymethylation)-술폰화 반응(Sulfonation)-중합(Polymerization)-중화(Neutralization) 및 안정화(Stabilization)의 4단계로 나누어 반응을 진행시키면서 멜라민과 포르말린의 몰비를 변화시키고, 반응 3단계 중합과정에서 산촉매의 종류와 양을 조절하면서 시멘트용 고유동화제를 합성하였다. 다양한 합성조건에서 합성된 SMF계 고유동화제를 시멘트 모르타르 및 페이스트에 적용하여 작업성, 슬럼프 손실 및 압축 강도 등의 물리적 특성을 비교하였고, SEM image를 통하여 수화물 형태를 관찰하였다. 실험결과 SMF 고유동화제의 축합물 구조특성이 시멘트의 유동화 특성에 큰 영향을 주었다.