Browse > Article

The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions  

Yoon, Sung-Won (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Lee, Bum-Jae (Department of Fine Chemical Engineering and Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.16, no.6, 2005 , pp. 815-821 More about this Journal
Abstract
Three major commercially available organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF) and sulfonated melamine-formaldehyde (SMF). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps including hydroxymethylation (Step 1), sulfonation (Step 2), polymerization (Step 3) and neutralization and stabilization (Step 4). In this synthesis, mole ratio of melamine to formaline and the amount of acid catalyst used were varied. The obtained SMF superplasticizers were applied to cement paste and mortar and their physical properties including workability, slump loss, compressive strength were investigated. Also their hydrate shapes were investigated by examining SEM images of the cured paste. It was found that the fluidity properties of cement were significantly influenced by the structure of SMF condensates.
Keywords
organic admixture; SMF; fluidity; slump loss; superplasticizer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. G. Han, J. Kor. Conc. Soc., 13, 26 (2001)
2 S. W. Yoon, J. S, Bok, and J. S. Rho, J. lnd Eng. Chem., 10, 883 (2004)
3 U. S. Patent 5,424,390 (1995)
4 Y. H. Lee, C. A. Kim, W. H. Jang, H. J. Choi, and M. S. Jhon, Polymer, 42, 8277 (2001)   DOI   ScienceOn
5 M. Kinoshta, T. Yonezawa, and Y. Yuki, JCA Proc. Cem. Conc., 49, 196 (1993)
6 S. Chandra, J. Biomstrom, Cem. Caner. Res., 32, 1613 (2002)
7 D. M. Roy, Cem. Caner. Res., 3, 807 (1973)
8 M. Absi-Halabi, S. M. Lahalih, and T. Al-Khalid, J. Appl. Poly. Sci., 33, 2975 (1987)   DOI   ScienceOn
9 U. S. Patent 4,444,945 (1984)
10 W. J. Kim, J. K. Kang, S. H. Kim, W.S. Kim, and Y. D. Kwon, J. Kor. Conc. Soc., 5, 121 (1993)
11 T. Sebok, M. Vondruska, Cem. Concr. Res., 30, 993 (2000)   DOI   ScienceOn
12 T. Sebok and M. Vondruska, Cem. Caner. Res., 30, 993 (2000)
13 K. Koeda, J. Chem. Soc. Japan, Pure Chem. Soc., 75, 571 (1954)
14 M. R. Rixon, Chemical Admixtures for Concrete, 52, Halsted Press, London (1978)
15 S. Chandra, J. Biomstrom, Cem. Caner. Res., 32, 1605 (2002)
16 H. T, Eun and Y. S, Ko, J. Ind, Eng. Chem., 9, 614 (2003)
17 Meishan Pei, Dujin Wang, Xianbo Hu, and Duanfu Xu, Cem. Caner. Res., 30, 1841 (2000)
18 H. Uchikawa, S. Hanchara, and D. Sawaki, Cem. Caner. Res., 27, 37 (1997)
19 W. F. Perenchio, D. A. Whiting, and D. L. Kantro, Proc. 1st intern. Symp. Superplasticizers in Concrete, CANMET, Amer. Cone. Inst., 137, Ottawa, Canada (1979)
20 P. J. Anderson and D. M. Roy, Cem. Caner. Res., 18, 980 (1988)
21 U. S. Patent 4,677,159 (1987)
22 H. M. Jennings, Advanced in Cement Technology, ed. S. N. Ghosh, 1, 349, Pergamon Press, Oxford (1983)
23 V. M. Malhotra, Proc. ist Intern. Symp. Superplasticizers in Concrete, Amer. Conc. Inst., 221, Detroit, Michigan, U.S.A (1979)
24 Shawqul M. Lahallh, M. Absi-Halabi, and All M., Cem. Caner. Res., 18, 513 (1988)
25 S. Jahromi, Polymer, 40, 5103 (1999)   DOI   ScienceOn
26 K. Asaga and D. M. Roy. Cem. Caner. Res., 10, 287 (1980)