• Title/Summary/Keyword: compressive strength development model

Search Result 140, Processing Time 0.054 seconds

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.

Effective Strengths of Concrete Struts in Strut-Tie Models of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보 스트럿-타이 모델의 콘크리트 스트럿의 유효강도)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2195-2209
    • /
    • 2013
  • The effective strength of concrete struts must be determined accurately for the reliable strut-tie model analysis and design of structural concrete. In this study, the equations of the effective strength, which are useful for the three types of determinate and indeterminate strut-tie models of reinforced concrete deep beams employed in current design codes, are proposed. The effects of shear span-to-effective depth ratio, compressive strength of concrete, and flexural and shear reinforcement ratios are reflected in the development of the proposed equations. To examine the appropriateness of the proposed equations, the strengths of 241 reinforced concrete deep beams, all tested to shear failure, are evaluated by using the three types of strut-tie models with the existing and proposed equations.

Development of roadheader performance prediction model and review of machine specification (로드헤더 장비사양 검토 및 굴착효율 예측 모델 개발)

  • Jae Hoon Jung;Ju Hyi Yim;Jae Won Lee;Han Byul Kang;Do Hoon Kim;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.221-243
    • /
    • 2023
  • The use of roadheaders has been increasing to mitigate the problems of noise and vibration during tunneling operations in urban area. Since lack of experience of roadheader for hard rock, the selection of appropriate machines and the evaluation of cutting rates have been challenging. Currently, empirical models developed overseas are commonly used to evaluate cutting rates, but their effectiveness has not been verified for domestic rocks. In this paper, a comprehensive literature review was conducted to assess the rock cutting force, cutterhead capacity, and cutting rate to select the appropriate machine and evaluate its performance. The cutterhead capacity was reviewed based on the literature results for the site. Furthermore, a new empirical model and simplified method for predicting cutting rates were proposed through data analysis in relation to operation time and rock strength, and compared with those of the conventional model from the manufacturer. The results show good agreement for high strength range upper 80 MPa of uniaxial compressive strength.

Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result (CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안)

  • Kim Jae Ki;Seo Jong-Myeong;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns

  • Memarzadeh, Armin;Shahmansouri, Amir Ali;Poologanathan, Keerthan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.309-324
    • /
    • 2022
  • The post-fire elastic stiffness and performance of concrete-filled steel tube (CFST) columns containing recycled aggregate concrete (RAC) has rarely been addressed, particularly in terms of material properties. This study was conducted with the aim of assessing the modulus of elasticity of recycled aggregate concrete-filled steel tube (RACFST) stub columns following thermal loading. The test data were employed to model and assess the elastic modulus of circular RACFST stub columns subjected to axial loading after exposure to elevated temperatures. The length/diameter ratio of the specimens was less than three to prevent the sensitivity of overall buckling for the stub columns. The gene expression programming (GEP) method was employed for the model development. The GEP model was derived based on a comprehensive experimental database of heated and non-heated RACFST stub columns that have been properly gathered from the open literature. In this study, by using specifications of 149 specimens, the variables were the steel section ratio, applied temperature, yielding strength of steel, compressive strength of plain concrete, and elastic modulus of steel tube and concrete core (RAC). Moreover, parametric and sensitivity analyses were also performed to determine the contribution of different effective parameters to the post-fire elastic modulus. Additionally, comparisons and verification of the effectiveness of the proposed model were made between the values obtained from the GEP model and the formulas proposed by different researchers. Through the analyses and comparisons of the developed model against formulas available in the literature, the acceptable accuracy of the model for predicting the post-fire modulus of elasticity of circular RACFST stub columns was seen.

Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network (인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가)

  • Park, Do Kyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.179-186
    • /
    • 2006
  • In this study, Multi-Layer Perceptron(MLP) among models of Artificial Neural Network(ANN) is used for the development of a model that evaluates the bending capacities of reinforced concrete beams strengthened by FRP Rebar. And the data of the existing researches are used for materials of ANN model. As the independent variables of input layer, main components of bending capacities, width, effective depth, compressive strength, reinforcing ratio of FRP, balanced steel ratio of FRP are used. And the moment performance measured in the experiment is used as the dependent variable of output layer. The developed model of ANN could be applied by GFRP, CFRP and AFRP Rebar and the model is verified by using the documents of other previous researchers. As the result of the ANN model presumption, comparatively precise presumption values are achieved to presume its bending capacities at the model of ANN(0.05), while observing remarkable errors in the model of ANN(0.1). From the verification of the ANN model, it is identified that the presumption values comparatively correspond to the given data ones of the experiment. In addition, from the Sensitivity Analysis of evaluation variables of bending performance, effective depth has the highest influence, followed by steel ratio of FRP, balanced steel ratio, compressive strength and width in order.

The examination of application possibility and development of new welding joint shape for aluminum alloy (Al어선 선체용접부의 신형상 개발 및 적용 가능성 검토)

  • Jong-Myung Kim;Chong-In Oh;Han-Sur Bang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • Manufacture of fishing vessel is needed the effective material for light, strength, fire and corrosion of water in order to improve durability by high-speed and fishing. These fishing vessel can be divided into FRP and AI alloys fishing vessel. FRP fishing vessel is light and effective for strength but highly ignited and susceptible to heat during the manufacturing ship by-produce noxious component for human. In the case of a scrapped ship, it cause environmental pollution. On the other hand, aluminum is a material in return for FRP and has merit of high-strength and lightness. It's more heat proof and durable than FRP and superior to prevent from corrosion. Al alloys fishing vessel development is rising as an urgent matter. But, al alloy has some defect of bad weldability, welding transformation, cracks and overcost of construction. Therefore this study is to develop the new welding joint shape solving aluminum defects and mechanical behavior. First of all, strength was compared and reviewed by analysis of plate, stiffen plate, new model simplified by using plate theory. On the base of this result, plate and new model of temperature distribution, weld residual stress and strength of tensile, compressive force were compared and reviewed by finite element computer program has been developed to deal with heat conduction and thermal elasto plastic problem. Also, new model is proved application possibility and excellent mechanic by strength comparison is established to tensile testing result.

  • PDF

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard;Ondiaka, Mary Nelima;Maina, Duncan;Jonah, Kiptanui Arap Too;Kamran, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

Development of the Smart Concrete Using Electric Resistance (전기 저항을 이용한 스마트 콘크리트의 개발)

  • 김화중;김이성;김형준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.447-453
    • /
    • 2004
  • Various structural materials have been used in construction projects using stones, connotes, and steels materials. Among of these projects, concretes may use widely because concretes have high compressive strength, and comparatively easy maintenance and management. Reinforced concrete Buildings will be deteriorated as time passed. These problems will be accelerated by propagation of cracks. In order to manage such cracks, time, efforts and expense are required. In this study, leakages of fluorescence and adhesive material were investigated using glass sensors that were embedded in a model beam and column. In addition, currents in glass pipe sensor were observed to find leakage of liquid in glass pipes. Progressive cracks were generated by fracture of glass me sensor. In this investigation, a reinforcement clothing system was wrapped for a glass pipe sensor, The glass pipe sensor that can make control and reinforce cracks simultaneously.

  • PDF