Browse > Article
http://dx.doi.org/10.12989/gae.2022.30.3.259

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms  

Kidega, Richard (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University)
Ondiaka, Mary Nelima (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University)
Maina, Duncan (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University)
Jonah, Kiptanui Arap Too (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University)
Kamran, Muhammad (Department of Mining Engineering, Institute Technology of Bandung)
Publication Information
Geomechanics and Engineering / v.30, no.3, 2022 , pp. 259-272 More about this Journal
Abstract
Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.
Keywords
accuracy; gradient boosting algorithm; modelling; rockburst; sensitivity; specificity;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Li, Z., Li, B., Han, X. and Song, W. (2014), "Tunnel rockburst proneness study based on AHP-FUZZY method and field test", Elec. J. Geotech. Eng., 19, 117-128
2 Liu, X., Xia, Y., Lin, M. and Benzerzour, M. (2019), "Experimental study of rockburst under true-triaxial gradient loading conditions", Geomech. Eng., 18(5), 481-492. https://doi.org/10.12989/gae.2019.18.5.481.   DOI
3 Lu, J., Yin, G., Gao, H., Li, X., Zhang, D., Deng, B., Wu, M. and Li, M. (2020), "True triaxial experimental study of disturbed compound dynamic disaster in deep underground coal mine", Rock Mech. Rock Eng., 53(5), 2347-2364. https://doi.org/10.1007/s00603-019-02041-x.   DOI
4 Ma, C.S., Chen, W.Z., Tan, X.J., Tian, H.M., Yang, J.P. and Yu, J.X. (2018), "Novel rockburst criterion based on the TBM tunnel construction of the Neelum-Jhelum (NJ) hydroelectric project in Pakistan", Tunnel. Underg. Space Technol., 81, 391-402. https://doi.org/10.1016/j.tust.2018.06.032.   DOI
5 Miao, C., Sun, X., Zhang, Y., Wang, J., Zhang, J., Song, P. and Li, G. (2020), "Experimental study on the strain rockburst of calcareous sandstone containing joint surface", Arab. J. Geosci., 13(19), 1-10. https://doi.org/10.1007/s12517-020-06035-w.   DOI
6 Monjezi, M., Ghafurikalajahi, M. and Bahrami, A. (2011), "Prediction of blast-induced ground vibration using artificial neural networks", Tunnel. Underg. Space Technol., 26(1), 46-50. https://doi.org/10.1016/j.tust.2010.05.002.   DOI
7 Pu, Y., Apel, D.B. and Lingga, B. (2018), "Rockburst prediction in kimberlite using decision tree with incomplete data", J. Sustain. Min., 17(3), 158-165. https://doi.org/10.1016/j.jsm.2018.07.004.   DOI
8 Naji, A.M., Rehman, H., Emad, M.Z., Ahmed, S., Kim, J.J. and Yoo, H. (2019), "Rockburst evaluation in complex geological environment in deep hydropower tunnels. In Tunnels and Underground Cities", Engineering and Innovation meet Archaeology, Architecture and Art, CRC Press.
9 Papadopoulos, D. and Benardos, A. (2021), "enhancing machine learning algorithms to assess rock burst phenomena", Geotech. Geolog. Eng., 39(8), 5787-5809. https://doi.org/10.1007/s10706-021-01867-z.   DOI
10 Pohrt, R. and Li, Q. (2014), "Complete boundary element formulation for normal and tangential contact problems", Phys. Mesomech., 17(4), 334-340. https://doi.org/10.1134/s1029959914040109.   DOI
11 Qi, C., Fourie, A. and Chen, Q. (2018), "Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill", Constr. Build. Mater., 159, 473-478. https://doi.org/10.1016/j.conbuildmat.2017.11.006.   DOI
12 Qi, C., Fourie, A., Chen, Q. and Zhang, Q. (2018), "A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill", J. Clean. Prod., 183, 566-578. https://doi.org/10.1016/j.jclepro.2018.02.154.   DOI
13 Qi, C., Tang, X., Dong, X., Chen, Q., Fourie, A. and Liu, E. (2019), "Towards intelligent mining for backfill: A genetic programming-based method for strength forecasting of cemented paste backfill", Miner. Eng., 133, 69-79. https://doi.org/10.1016/j.mineng.2019.01.004.   DOI
14 He, M., e Sousa, L.R., Miranda, T. and Zhu, G. (2015), "Rockburst laboratory tests database-application of data mining techniques", Eng. Geol., 185, 116-130. https://doi.org/10.1016/j.enggeo.2014.12.008.   DOI
15 Wang, C., Chuai, X., Shi, F., Gao, A. and Bao, T. (2018), "Experimental investigation of predicting rockburst using Bayesian model", Geomech. Eng., 15(6), 1153-1160. https://doi.org/10.12989/gae.2018.15.6.1153.   DOI
16 Wang, C., Wu, A., Lu, H., Bao, T. and Liu, X. (2015), "Predicting rockburst tendency based on fuzzy matter-element model", Int. J. Rock Mech. Min. Sci., 75, 224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004.   DOI
17 Wang, J.A. and Park, H.D. (2001), "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunnel. Underg. Space Technol., 16(1), 49-57. https://doi.org/10.1016/s0886-7798(01)00030-x.   DOI
18 Wang, J.L., Chen, J.P., Yang, J. and Que, J.S. (2009), "Method of distance discriminant analysis for determination of classification of rockburst", Rock Soil Mech., 30(7), 2203-2208.   DOI
19 Wang, M., Zhou, J.W., Shi, A.C., Han, J.Q. and Li, H.B. (2020), "Key factors affecting the deformation and failure of surrounding rock masses in large-scale underground powerhouses", Adv. Civil Eng., 2020, Article ID 8843466. https://doi.org/10.1155/2020/8843466.   DOI
20 Wang, Y.H., Chen, L.W. and Shen, F. (2008), "Numerical modeling of energy release in rockburst", Rock Soil Mech.- Wuhan, 29(3), 790.
21 Zhai, S., Su, G., Yin, S., Zhao, B. and Yan, L. (2020), "Rockburst characteristics of several hard brittle rocks: A true triaxial experimental study", J. Rock Mech. Geotech. Eng., 12(2), 279-296. https://doi.org/10.1016/j.jrmge.2019.07.013.   DOI
22 Zhang, C., Feng, X.T., Zhou, H., Qiu, S. and Wu, W. (2013), "Rockmass damage development following two extremely intense rockbursts in deep tunnels at Jinping II hydropower station, southwestern China", Bul. Eng. Geol. Environ., 72(2), 237-247. https://doi.org/10.1007/s10064-013-0470-y.   DOI
23 Adoko, A.C., Gokceoglu, C., Wu, L. and Zuo, Q.J. (2013), "Knowledge-based and data-driven fuzzy modeling for rockburst prediction", Int. J. Rock Mech. Min. Sci., 61, 86-95. https://doi.org/10.1016/j.ijrmms.2013.02.010.   DOI
24 Brady, B.H.G. and Brown, E.T. (2007), "Rock mechanics and mining engineering", Rock Mechanics for Underground Mining, Springer, Dordrecht.
25 Chen, Y., Zhang, J., Zhang, J., Xu, B., Zhang, L. and Li, W. (2021), "Rockburst precursors and the dynamic failure mechanism of the deep tunnel: A review", Energi., 14(22), 7548. https://doi.org/10.3390/en14227548.   DOI
26 Du, F., Wang, K., Guo, Y., Wang, G., Wang, L. and Wang, Y. (2020), "The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study", Geomech. Eng., 22(3), 255-264. https://doi.org/10.12989/gae.2020.22.3.255.   DOI
27 Friedman, J.H. (2002). "Stochastic gradient boosting", Comput. Sstat. Data Anal., 38(4), 367-378.   DOI
28 Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning Data Mining, Inference, and Prediction, Springer.
29 Weng, L., Huang, L., Taheri, A. and Li, X. (2017), "Rockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, China", Tunnel. Underg. Space Technol., 69, 223-232. https://doi.org/10.1016/j.tust.2017.05.011.   DOI
30 Su, G., Zhang, Y. and Chen, G. (2010), "Identify rockburst grades for Jinping II hydropower station using Gaussian process for binary classification", 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2, 364-367. https://doi.org/10.1109/cmce.2010.5609934.   DOI
31 Akram, M.S., Mirza, K., Zeeshan, M., Ali, M. and Ahmed, L. (2018), "Geotechnical investigation and prediction of rock burst, squeezing with remediation design by numerical analyses along headrace tunnel in Swat Valley, Khyber Pakhtunkhwa, Pakistan", Open J. Geology, 8(10), 965-986. https://doi.org/10.4236/ojg.2018.810058.   DOI
32 Bruning, T., Karakus, M., Akdag, S., Nguyen, G.D. and Goodchild, D. (2018), "Influence of deviatoric stress on rockburst occurrence: An experimental study", Int. J. Min. Sci. Technol., 28(5), 763-766. https://doi.org/10.1016/j.ijmst.2018.08.005.   DOI
33 Chen, B., Gu, C., Bao, T., Wu, B. and Su, H. (2016), "Failure analysis method of concrete arch dam based on elastic strain energy criterion", Eng. Fail. Anal., 60, 363-373. https://doi.org/10.1016/j.engfailanal.2015.11.045   DOI
34 Dobbin, K.K. and Simon, R.M. (2011), "Optimally splitting cases for training and testing high dimensional classifiers", BMC Med. Genom., 4(1), 1-8. https://doi.org/10.20944/preprints202007.0753.v1.   DOI
35 Naji, A.M., Rehman, H., Emad, M.Z., Ahmad, S., Kim, J.J. and Yoo, H. (2019), "Static and dynamic influence of the shear zone on rockburst occurrence in the headrace tunnel of the Neelum Jhelum hydropower project, Pakistan", Energi., 12(11), 2124. https://doi.org/10.3390/en12112124.   DOI
36 Shirani Faradonbeh, R. and Taheri, A. (2019), "Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques", Eng. Comput., 35(2), 659-675. https://doi.org/10.1007/s00366-018-0624-4.   DOI
37 Sun, J.S., Zhu, Q.H. and Lu, W.B. (2007), "Numerical simulation of rock burst in circular tunnels under unloading conditions", J. China Univ. Min. Technol., 17(4), 552-556. https://doi.org/10.1016/s1006-1266(07)60144-8.   DOI
38 Szwedzicki, T. (2018), Rock Mass Response to Mining Activities: Inferring Large-scale Rock Mass Failure, CRC Press. https://doi.org/10.1201/9781315112336.   DOI
39 Ullah, B., Kamran, M. and Rui, Y. (2022), "Predictive modeling of short-term rockburst for the stability of subsurface structures using machine learning approaches: T-SNE, K-Means clustering and XGBoost", Math., 10(3), 449. https://doi.org/10.3390/math10030449.   DOI
40 Zhang, P., Yi, C.P., Nordlund, E., Shirzadegan, S., Nyberg, U., Malmgren, L. and Nordqvist, A. (2013), "Numerical back-analysis of simulated rockburst field tests by using coupled numerical technique", Ground Support 2013: Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction, May.
41 Ge, Q. and Feng, X. (2008), "Classification and prediction of rockburst using AdaBoost combination learning method", Rock Soil Mech., Wuhan, 29(4), 943.
42 Dong, lj., Li, X.B. and Peng, K. (2013) "Prediction of rockburst classification using random forest", Trans. Nonferrous Met. Soc. China, 23(2), 472-477. https://doi.org/10.1016/s1003-6326(13)62487-5.   DOI
43 Fan, J., Chen, J., Jiang, D., Wu, J., Shu, C. and Liu, W. (2019), "A stress model reflecting the effect of the friction angle on rockbursts in coal mines", Geomech. Eng., 18(1), 21-27. https://doi.org/10.12989/gae.2019.18.1.021.   DOI
44 Friedman, J.H. (2001), "Greedy function approximation: a gradient boosting machine", Ann. Statist., 11(6), 332. https://doi.org/10.1214/aos/1013203451.   DOI
45 Gollapudi, S. (2016), Practical Machine Learning, Packt Publishing Ltd.
46 Hoek, E. and Brown, E.T. (2019), "The Hoek-Brown failure criterion and GSI-2018 edition", J. Rock Mech. Geotech. Eng., 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001.   DOI
47 Jia, C., Wang, H., Sun, X., Yu, X. and Luan, H. (2020), "Study on rockburst prevention technology of isolated working face with thick-hard roof", Geomech. Eng., 20(5), 447-459. https://doi.org/10.12989/gae.2020.20.5.447.   DOI
48 Khoda Bakhshi, A. and Ahmed, M.M. (2021), "Utilizing blackbox visualization tools to interpret non-parametric real-time risk assessment models", Transportmetrica A: Trans. Sci., 17(4), 739-765. https://doi.org/10.1080/23249935.2020.1810169.   DOI
49 He, M., Xia, H., Jia, X., Gong, W., Zhao, F. and Liang, K. (2012), "Studies on classification, criteria and control of rockbursts", J. Rock Mech. Geotech. Eng., 4(2), 97-114. https://doi.org/10.3724/sp.j.1235.2012.00097.   DOI
50 Kabwe, E. and Wang, Y. (2015), "Review on rockburst theory and types of rock support in rockburst prone mines", Open J. Saf. Sci. Technol., 5(04), 104. https://doi.org/10.4236/ojsst.2015.54013.   DOI
51 Li, N. (2017), "Predicting underground tunnel hazards using machine learning techniques", Doctoral Dissertation, Caminos. https://doi.org/10.20868/upm.thesis.48301.   DOI
52 Zhao, Z.N., Feng, X.T., Chen, B.R., Feng, G.L. and Chen, T.Y (2013), "Study of relativity between rockburst and microseismic activity zone in deep tunnel", Rock Soil Mech., 34(2), 491-497.
53 Zhou, J., Guo, H., Koopialipoor, M., Jahed Armaghani, D. and Tahir, M.M. (2021), "Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm". Eng. Comput., 37(3), 1679-1694. https://doi.org/10.1007/s00366-019-00908-9.   DOI
54 Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Saf. Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.   DOI
55 Zhou, J., Li, X. and Mitri, H.S. (2016), "Classification of rockburst in underground projects: Comparison of ten supervised learning methods", J. Comput. Civil Eng., 30(5), 04016003. https://doi.org/10.1061/(asce)cp.1943-5487.0000553.   DOI
56 Zhou, J., Li, X. and Mitri, H.S. (2018), "Evaluation method of rockburst: State-of-the-art literature review", Tunnel. Underg. Space Technol., 81, 632-659. https://doi.org/10.1016/j.tust.2018.08.029.   DOI
57 Liang, W., Sari, A., Zhao, G., McKinnon, S.D. and Wu, H. (2020). Short-term rockburst risk prediction using ensemble learning methods", Nat. Hazard., 104(2), 1923-1946. https://doi.org/10.1007/s11069-020-04255-7.   DOI
58 Zhou, J., Li, X. and Shi, X. (2012), "Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines", Saf. Sci., 50(4), 629-644. https://doi.org/10.1016/j.ssci.2011.08.065.   DOI
59 Zhou, J., Shi, X. and Li, X. (2016), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", J. Vib. Control, 22(19), 3986-3997. https://doi.org/10.1177/1077546314568172.   DOI
60 Zhu, Y.H., Liu, X.R. and Zhou, J.P. (2008), "Rockburst prediction analysis based on v-SVR algorithm", J. China Coal Soc., 33(3), 277-281.   DOI
61 Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Miner. Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010.   DOI
62 Keneti, A. and Sainsbury, B.A. (2018), "Review of published rockburst events and their contributing factors", Eng. Geology, 246, 361-373. https://doi.org/10.1016/j.enggeo.2018.10.005.   DOI
63 Keprate, A. and Ratnayake, R.C. (2017), "Using gradient boosting regressor to predict stress intensity factor of a crack propagating in small bore piping", 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), December. https://doi.org/10.1109/ieem.2017.8290109.   DOI
64 Li, T., Ma, C., Zhu, M., Meng, L. and Chen, G. (2017), "Geomechanical types and mechanical analyses of rockbursts", Eng. Geology, 222, 72-83. https://doi.org/10.1016/j.enggeo.2017.03.011.   DOI
65 Kuhn, M. and Johnson, K. (2013), "Book review: Max Kuhn and Kjell Johnson, Applied predictive modeling, New York, Springer", Biometric., 74(1), 383-383. https://doi.org/10.1111/biom.12855.   DOI
66 Ma, T.H., Tang, C.A., Tang, L.X., Zhang, W.D. and Wang, L. (2015), "Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station". Tunnel. Underg. Space Technol., 49, 345-368. https://doi.org/10.1016/j.tust.2015.04.016.   DOI
67 Sun, X., Xu, H., Zheng, L., He, M. and Gong, W. (2016), "An experimental investigation on acoustic emission characteristics of sandstone rockburst with different moisture contents", Sci. China Technol. Sci., 59(10), 1549-1558. https://doi.org/10.1007/s11431-016-0181-8.   DOI
68 Naji, A.M., Rehman, H., Emad, M.Z. and Yoo, H. (2018), "Impact of shear zone on rockburst in the deep neelum-jehlum hydropower tunnel: A numerical modeling approach", Energi., 11(8), 1935. https://doi.org/10.3390/en11081935.   DOI
69 Lu, Z., Ju, W., Gao, F., Feng, Y., Sun, Z., Wang, H. and Yi, K. (2019), "A new bursting liability evaluation index for coal-the effective elastic strain energy release rate", Energi., 12(19), 3734. https://doi.org/10.3390/en12193734.   DOI
70 Ma, Y., Liu, C., Wu, F. and Li, X. (2018), "Rockburst characteristics and mechanisms during steeply inclined thin veins mining: a case study in Zhazixi Antimony mine, China", Shock Vib., 2018. Article ID 3786047. https://doi.org/10.1155/2018/3786047.   DOI
71 Natekin, A. and Knoll, A. (2013), "Gradient boosting machines, a tutorial", Front. Neurorobot., 7, 21. https://doi.org/10.3389/fnbot.2013.00021.   DOI
72 Pu, Y. (2019), "Machine learning approaches for long-term rock burst prediction", Doctor of Philosophy, University of Alberta. https://doi.org/10.7939/r3-7dwn-5c22.   DOI
73 Larsson, K. (2004), Seismicity in Mines, Birkhauser.
74 Zeng, Y., Chen, J., Li, D. and Li, X. (2020) "Study on rock burst behavior and tendency identification of surrounding rocks in hard and brittle formations of deep and ultra-deep wells", IOP Conf. Ser.: Earth Environ. Sci., 570(3), 032056. https://doi.org/10.1088/1755-1315/570/3/032056.   DOI
75 Albrecht, J. and Potvin, Y. (2005), "Identifying the factors that control rockburst damage to underground excavations. In Identifying the factors that control rockburst damage to underground excavations", Australian Centre for Geomechanics, 519-528. https://doi.org/10.36487/acg_repo/574_56.   DOI
76 Pu, Y., Apel, D.B., Liu, V. and Mitri, H. (2019), "Machine learning methods for rockburst prediction-state-of-the-art review", Int. J. Min. Sci. Technol., 29(4), 565-570. https://doi.org/10.1016/j.ijmst.2019.06.009.   DOI
77 Ahmad, M., Hu, J.L., Hadzima-Nyarko, M., Ahmad, F., Tang, X.W., Rahman, Z.U., Nawaz, A. and Abrar, M. (2021), "Rockburst hazard prediction in underground projects using two intelligent classification techniques: A comparative study", Symmetry, 13(4), 632. https://doi.org/10.3390/sym13040632.   DOI