• 제목/요약/키워드: compressive behaviour

검색결과 223건 처리시간 0.02초

항복강도에 따른 선체판의 탄소성거동에 관한 연구 (A Study on the Elasto-Plasticity Behaviour According to the Yield Strength of a Ship's Plate)

  • 고재용;박주신
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.27-31
    • /
    • 2003
  • 최근 박판두재인 고장력강이 구조물에 폭넓게 사용됨으로서 좌굴이 발생하기 쉽다. 특히 고장력강을 사용하는 선체구조물에서는 좌굴은 중요한 설계기준이 되고 있다. 따라서 좌굴발생 후 거동을 정확하게 파악하는 것은 선체구조의 안정성에 중요하다. 본 연구에서는 선체의 대표적인 구조물인 판을 대상으로 각 선급 룰에서 좌굴강도식의 기준으로 삼고 있는 단순지지조건에서의 여러 가지 항복강도에 따라 압축하중을 받는 박판구조물의 초기좌굴 후 거동과 2차좌굴 후 거동에 대해서 규명하였다. 해석방법으로는 범용 유한요소해석 프로그램인 ANSYS를 이용하였고 2차좌굴과 같은 복잡한 비선형거동을 해석하기 위하여 호장증분법(Arc-length method)을 사용하였다.

  • PDF

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • 제25권4호
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

Ultimate torsional behaviour of axially restrained RC beams

  • Bernardo, Luis F.A.;Taborda, Catia S.B.;Andrade, Jorge M.A.
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.67-97
    • /
    • 2015
  • This article presents a computing procedure developed to predict the torsional strength of axially restrained reinforced concrete beams. This computing procedure is based on a modification of the Variable Angle Truss Model to account for the influence of the longitudinal compressive stress state due to the axial restraint conditions provided by the connections of the beams to other structural elements. Theoretical predictions from the proposed model are compared with some experimental results available in the literature and also with some numerical results from a three-dimensional nonlinear finite element analysis. It is shown that the proposed computing procedure gives reliable predictions for the ultimate behaviour, namely the torsional strength, of axially restrained reinforced concrete beams under torsion.

호장증분법을 이용한 2차좌굴을 동반한 선체판의 최종강도에 관한 연구 (A Study on the Ultimate Strength of a Ship's Plate accompanied Secondary Buckling in used Arc-Length Method)

  • 고재용;박주신;주종길
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 춘계학술발표회
    • /
    • pp.159-165
    • /
    • 2003
  • To Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance nile to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

Mechanical Properties of Carbon/Carbon Composites Densified by HIP Technique

  • Manocha, L.M.;Warrier, Ashish;Manocha, S.;Banerji, S.;Sathiyamoorthy, D.
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.6-14
    • /
    • 2005
  • The study of mechanical properties and fracture behaviour of carbon/carbon composites is significant to its application and development. These are dependent on microstructure and properties of reinforcing fibers and matrix, fiber/matrix interface and porosity/cracks present in the composites. In the present studies high-density carbon/carbon composites have been prepared using PAN and various pitch based carbon fibers as reinforcements and pitch as matrix with repeated densification cycles using high-pressure impregnation and carbonization technique. Scanning electron microscopy has been used to study the fracture behaviour of the highly dense composites and correlated with structure of the composites. The geometry of reinforcement and presence of unfilled voids/cracks was found to influence the path of crack propagation and thereby the strength of composites. The type of stresses (tensile or compressive) accumulated also plays an important role in fracture of composites.

  • PDF

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

호장증분법을 이용한 선체판의 최종강도에 관한 연구 (A Study on the Ultimate Strength of a Ship's Plate in used Arc-Length Method)

  • 고재용;박주신
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.496-503
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

Strengthening of cement blended soft clay with nano-silica particles

  • Thomas, Geethu;Rangaswamy, Kodi
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.505-516
    • /
    • 2020
  • In recent years, Nano-technology significantly invaded the field of Geotechnical engineering, particularly in soil stabilisation techniques. Stabilisation of weak soil is envisioned to modify various soil characteristics by the addition of natural or synthetic materials into the virgin soil. In the present study, laboratory experiments were executed to investigate the influence of nano-silica particles in the consistency limits, compressive strength of the soft clay blended with cement. The results revealed that the high compressibility behaviour of soft clay modified to medium-stiff condition with fewer dosages of cement and nano-silica. The mechanism behind the strength development is verified with the previous researches as well as from Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction test (XRD) and Scanning Electron Microscopy (SEM) analysis. Based on the results, the presence of nano-silica in soft clay blended with cement has a positive effect on the behaviour of soil. This technique proves to be very economical and less detrimental to the environment.

면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구 (A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust)

  • 고재용;박주신;최익창;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

알루미나 세라믹과 구리의 브레이징 접합물에 대한 열응력의 유한요소법 해석에 관한 연구 (A Study on Thermal Stress Analysis of Alumina Ceramics to Copper Brazement by Finite Element Method)

  • 전창훈;양영수;나석주
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.547-553
    • /
    • 1990
  • 본 연구에서는 알루미나 세라믹(Al$_{2}$O$_{3}$)재료와 순수구리를 티타늄 용자재로써 접합한 브레이징 접합물내의 냉각후 잔류응력을 유한요소법으로 사용하여 해석하였다.