• Title/Summary/Keyword: compressive and flexural strength

검색결과 1,116건 처리시간 0.024초

섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites)

  • 박승범;윤의식;차종훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF

갈고리형 강섬유를 혼입한 보통 및 고강도 콘크리트의 휨강도 평가 (Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers)

  • 오영훈
    • 콘크리트학회논문집
    • /
    • 제20권4호
    • /
    • pp.531-539
    • /
    • 2008
  • 본 연구에서는 강섬유보강 고강도콘크리트의 휨강도와 휨인성을 평가하기 위하여 실험을 수행하였으며, 이러한 실험 결과와 기존 연구자들의 실험 결과를 추가하여 강섬유보강 고강도콘크리트의 휨거동 특성을 분석하였다. 고강도 강섬유 콘크리트의 휨거동 특성은 강도와 인성으로 평가할 수 있으며, 이러한 특성은 콘크리트의 압축강도, 강섬유 혼입률 및 형상비, 강섬유계수와 같은 요소에 의해 영향을 받는 것으로 파악되었다. 아울러 기존 연구자에 의해 제안된 휨강도 산정식의 유효성을 평가하였으며, 강섬유 콘크리트의 휨강도는 콘크리트의 압축강도, 강섬유 혼입률 및 형상비, 강섬유계수와 같은 구조변수의 영향을 모두 고려하여 평가하는 것이 합리적이라고 판단되었다. 최종적으로 본 연구에서는 강섬유 혼입에 따른 휨강도의 상승분과 주요 구조변수간의 상관관계를 분석함으로써 보다 합리적인 휨강도 산정식을 제시하였다.

휨.압축 하중을 받는 콘크리트 부재의 크기효과 (Size Effect for Flexural Compression of Concrete Specimens)

  • 김진근;이성태;양은익;김민욱;이상순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.371-376
    • /
    • 1998
  • In this study, the size effect of concrete members subjected to the axial load and bending moment is investigated using a series of C-shaped specimens of which test procedure is similar to those of Hognestad, Hanson, and McHenry's. Main test variable is a size ratio of the specimens(1:1/2:1/4) at the concrete compressive strength of 500kg/㎠. Test results show that the flexural compression strength at failure decreases as the size of specimen increases, that is, the size effect law is present. Model equation is derived using regression analyses with experimental data and it is compared with formulas for compressive strength of cylinders and shear strength of beams without stirrups. Size effects is distinct th following sequence; shear strength of beams without stirrups, compressive strength of C-shaped specimens, compressive strength of cylinders.

  • PDF

양생온도에 따른 수중불분리성 콘크리트의 물리.역학적 특성 (Mechanical and Physical of Antiwashout Underwater Concrete under Different Curing Temperature)

  • 이병덕;원종필;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.301-307
    • /
    • 1997
  • This paper is evaluated for properties of aggregate and antiwashout admixture not only to minimize segregation and water contamination of underwater concrete but also to meet concrete quality required. Two antiwashout admixtures used in this study were available domestically and slump flow, pH, setting time, and filing property of fresh concrete and the compressive strength, flexural strength under water and in the air under 2 different curing conditions ($10^{\cire}C$ and $20^{\cire}C$ ) were measured. Compressive strength ratio of specimens cured in and water temperature $10^{\cire}C$ /$20^{\cire}C$ added HPEC and HPMC was 64% and 89%, respectively. Relative compressive strength of 2 kinds observed higher concrete added HPEC, 3% at $10^{\cire}C$ curing temperature, 34% at $20^{\cire}C$ . The flexural strength of specimens made under water was 1/4~1/6 of compressive strength similar to the existing data in the literature.

  • PDF

Ormocer 계열 수복재의 물성에 관한 연구 (SELECTED MECHANICAL PROPERTIES OF ORMOCER RESTORATIVE MATERIALS)

  • 이동수;정태성;김신
    • 대한소아치과학회지
    • /
    • 제29권3호
    • /
    • pp.362-370
    • /
    • 2002
  • 최근 20년간 다양한 종류의 심미 수복재가 개발되었고, 특히 지난 5년 동안에는 그 수에 있어서 극적인 증가추세를 보였다. 최근 들어, ormocer라는 새로운 종류의 광중합형 수복재료가 소개되었는데, 화학 분야에서는 이미 오래 전부터 알려져 있던 성분으로, 광학렌즈 등의 표면경화제로 이용되어 오다가 최근 치과용 수복재에 도입되었다. 'Ormocer' 란 'Organically Modified Ceramics'의 약자로 'Ormosils' (Organically Modified Silicates)로도 알려져 있다. 그러나, 이 새로운 수복재에 대한 연구는 아직 미흡한 실정이다. 본 연구에서는 서로 다른 계통의 광중합형 수복재들(Z-100, Surefil, Tetric Ceram, Dyract AP)과 ormocer(Admira)를 압축강도와 굴곡강도 측면에서 비교 평가하고, 구강내 환경과 유사한 조건에서 수분흡수가 그 물성에 미치는 영향을 평가할 목적으로 시도되어 다음과 같은 결과를 얻었다. 1. 1일 후에 측정한 Admira의 압축강도는 Surefil보다는 낮았으나, 다른 재료들과는 유의한 차이를 나타내지 않았다(p>0.05). 2. 1일 후에 측정한 Admira의 굴곡강도는 다른 4종의 재료에 비해서 낮았다(p<0.05). 2일부터는 3종의 복합레진에 비해서 낮았다(p<0.05). 3. 실험기간(30일) 중 hybrid composite resin군(Z-100, Tetric Ceram)과 packable resin(Surefil)군 간에는 압축강도와 굴곡강도에서 유의한 차이가 없었다(p>0.05). 4. 실험에 사용된 5종의 수복재 모두 압축강도와 굴곡강도가 2일까지 증가하다가 7일부터 감소하였다(p<0.05). 5. 각 재료의 시간에 따른 압축강도와 굴곡강도의 변화양상은 통계적으로 유사하였다(p>0.05).

  • PDF

Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes

  • Koksal, Fuat;Bacanli, Cem;Benli, Ahmet;Gencel, Osman
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.93-105
    • /
    • 2022
  • The brittleness of concrete can be overcome by fiber reinforcement that controls the crack mechanisms of concrete. Corrosion-related durability issues can be prevented by synthetic fibers (SFs), while macro synthetic fibers have proven to be particularly effective to provide ductility and toughness after cracks. This experimental study has been performed to investigate the comparative flexural and mechanical behavior of four different macro-synthetic fiber-reinforced concretes (SFRCs). Two polyamide fibers (SF1 and SF2) with different aspect ratios and two different polypropylene fiber types (SF3 and SF4) were used in production of SFRCs. Four different SFRCs and reference concrete were compared for their influences on the toughness, compressive strength, elastic modulus, flexural strength, residual strength and splitting tensile strength. The outcomes of the study reveal that the flowability of reference mixture decreases after addition of SFs and the air voids of all SFRC mixtures increased with the addition of macro-synthetic fibers except SFRC2 mixture whose air content is the same as the reference mixture. The results also revealed that with the inclusion of SFs, 11.34% reduction in the cube compressive strength was noted for SFRC4 based on that of reference specimens and both reference concrete and SFRC exhibited nearly similar cylindrical compressive strength. Results illustrated that SFRC1 and SFRC4 mixtures consistently provide the highest and lowest flexural toughness values of 36.4 joule and 27.7 joule respectively. The toughness values of SFRC3 and SFRC4 are very near to each other.

콘크리트 보수용 라텍스 개질 시멘트계 보수 재료의 특성 (Performance of Latex Modified Cementitious Repair material for Concrete Structures)

  • 이상우;박성기;성상경;이재영;김완영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.289-292
    • /
    • 2006
  • The purpose of this study was to evaluate a performance of latex-modified repair material applied to the substrate concrete. The experimental variables were latex-cement ratios (5, 10, 15%), polymer(0.5%, 1%) and admixtures. The flow, air content, compressive strength, flexural strength were tested. Test results showed that compressive and flexural strength decreased by adding hydroxyethyl cellulose and increasing water-binder ratio. The compressive and flexural strength were increased when addition of defoamer.

  • PDF

Belite 시멘트를 사용한 고강도 철근콘크리트 보의 휨 거동에 관한 실험연구 (An Experimental Study on the Flexural Behavior of Reinforced High-Strength Concrete Beams with Belite Cement)

  • 한상훈;구봉근;김기수;윤상문;조흥동;전채만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.499-504
    • /
    • 1998
  • Objective of this study is to investigate experimentally the flexural behavior of reinforced high-strength concrete beams with Belite cement by comparing with those of normal reinforced concrete beams. The flexural tests are conducted on fourteen specimens having concrete compressive strength of 350 and 600kg/$\textrm{cm}^2$. The main experimental variables are compressive strength of concrete and reinforcement ratios. The load-displacement relationships, the section behavior of beam as a function of the location neutral axis, and ductility capacity are investigated. From the test results, the flexural behavior of reinforced high-strength concrete beams wite Belit cement are similar to the behavior of normal reinforced concrete beams.

  • PDF

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • 제4권2호
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.

골재의 입도와 입형 변화에 따른 인터로킹 블록의 특성 (The Properties of Inter-Locking Block with the Variation of Particle Grading and Shape of Aggregate)

  • 이상태;김기철;신병철;김진선;권상준;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.661-664
    • /
    • 1998
  • In this paper, the properties of inter-lacking block by the kind of aggregate and fineness modulus are investigated. According to the experimental results, compressive strength and flexural strength increase and absorption ratio decrease with larger fineness modulus in the range of 2.15~4.20. Flexural strength with river sand is higher than that with crushed sand by about 19%, compressive strength with river sand, that with crushed sand by about 11% and absorption ratio with river sand is smaller than that with crushed sand by abort 2%.

  • PDF