• Title/Summary/Keyword: compression stress

Search Result 1,464, Processing Time 0.031 seconds

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at.%Ni-2.0at.%Cu Alloys in Tension and Compression Condition (Ti-42.5at.%Ni-2.0at.%Cu합금의 인장 및 압축에 따른 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Cho, Jae-Whan;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.1-5
    • /
    • 2009
  • NiTiCu alloys can produce a large force per unit volume and operate with a simple mechanism. For this reasons, it has been widely studied for application as a micro actuator. So in this study, one-way and two way shape memory effects of Ti-42.5at%Ni-2.0at%Cu alloys are studied. In the case of one-way shape memory effects, shape memory recoverable stress and strain of this alloys were measured by means of tension and compression tests under constant temperature. The strains by tension and compression stress were perfectly recovered by heating at any testing conditions also shape memory recoverable stress increased to 116 MPa in tension tests and to 260 MPa in compression tests. In the case of two-way shape memory effects, transformation temperatures from thermal cycling under constant uniaxial applied tension and compression loads linearly increased by increasing external loads and their maximum recoverable strain is 3.8% at 100MPa tensile condition and 2.2% at 125 MPa compression condition.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

A Study on the Determination of Material Property by Cylinder Compression Test (원기둥 압축 시험을 통한 소재의 물성치 평가에 관한 연구)

  • Cha, Do-Sung;Choi, Hong-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1049-1061
    • /
    • 2006
  • In the study, the flow stress of material and friction condition were determined by using the cylinder compression test and numerical method. We proposed the flow stress equation including the initial yield strength to predict it from the upper bound method. The upper bound technique uses the velocity field which includes two unknowns to effectively express bulging. Also, inverse engineering technique uses the object function to minimize area enclosed by load-stroke curve. The friction factor is determined from the radius of curvature of the barrel by cylinder compression test. Flow stress and initial yield strength predicted from the above techniques are verified through the finite element simulation.

Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars (PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석)

  • Kim, Jung-Yup;Kim, Jae-Hyun;Choi, Byung-Ik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

The effect of peak cladding temperature occurring during interim-dry storage on transport-induced cladding embrittlement

  • Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1486-1494
    • /
    • 2020
  • To evaluate transport-induced cladding embrittlement after interim-dry storage, ring compression tests were carried out at room temperature(RT) and 135 ℃. The ring compression test specimens were prepared by simulating the interim-dry storage conditions that include four peak cladding temperatures of 250, 300, 350 and 400 ℃, two tensile hoop stresses of 80 and 100 MPa, two hydrogen contents of 250 and 500 wt.ppm-H and a cooling rate of 0.3 ℃/min. Radial hydride fractions of the ring specimens vary depending on those interim-dry storage conditions. The RT compression tests generated lower offset strains than the 135 ℃ ones. In addition, the RT and 135 ℃ compression tests indicate that a higher peak cladding temperature, a higher tensile hoop stress and the lower hydrogen content generated a lower offset strain. Based on the embrittlement criterion of 2.0% offset strain, an allowable peak temperature during the interim-dry storage may be proposed to be less than 350 ℃ under the tensile hoop stress of 80 MPa at the terminal cool-down temperature of 135 ℃.

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF

An Experimental Study on Concrete Stress Distribution in Compression Zone (콘크리트 압축 응력분포에 관한 실험적 연구)

  • Lee, Jae-Hoon;Lim, Kang-Sup;Choi, Jin-Ho;Choi, Young-Ho;Hwang, Do-Kyu;Yoo, Hyun-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.79-80
    • /
    • 2009
  • Compression stress distribution used to concrete structure design substitutes equivalent rectangle, trapezoid and parabola-rectangle stress block for actual concrete stress distribution. Presently, rectangular stress block of Korea Concrete Design Code is equal to it of ACI code that doesn't reflect the material feature of the high strength concrete. The study does an experiment on concrete compression stress distribution to know the material feature of the concrete used in korea.

  • PDF

A method for estimating residual stress development of PCB during thermo-compression bonding process (PCB 열 압착 공정에서 잔류응력 계산을 위한 방법)

  • Lee, Sang-Hyuk;Kim, Sun-Kyung
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.209-213
    • /
    • 2008
  • In this work, we have proposed a method for calculating the residual stress developed during the PCB thermo-compression bonding precess. Residual stress is the most important factor that causes PCB warpage in accordance with the pattern design. In this work, a single-layed double-sided PCB, which is comprised of the dielectric (FR-4) substrate in the middle and copper cladding on the both top and bottom sides, is considered. A reference temperature, where all stress is free, is calculated by comparing the calculated and measured warapge of a PCB of which copper cladding of the top side is removed. Then, the reesidual stress values is calculated for the double-sided PCB.

  • PDF

Theoretical analysis of tensile stresses and displacement in orthotropic circular column under diametrical compression

  • Tsutsumi, Takashi;Iwashita, Hiroshi;Miyahara, Kagenobu
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.333-347
    • /
    • 2011
  • This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.

A Study on the Contact Stress Analysis for X-ring (X-ring의 접촉 응력 해석에 관한 연구)

  • Lee, Hyun-Seung;Lee, Young-Shin;Lee, Jung-Hyun;Chun, Byong-Sun;Baek, Joon-Ho;Kim, Suk-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.733-739
    • /
    • 2008
  • The X-ring is a elastomer with X-shaped cross-section used as a mechanical seal or gasket. Such a X-ring was equipped in a groove and compressed between two or more parts, acts as a seal on the interface. This study aims to detect contact stress and deformed shape of a X-shaped ring shell under various compressive contact conditions. A contact stress analysis was carried out by finite element analysis. The effect of compression rates and thickness design variable was analyzed. X-ring kept up the double seal until a compression rate of 20%. The maximum stresses of the X-ring was occurred at the top and bottom corner. The maximum contact stress of X-ring was rapidly increased according with the compression rate. The X-rings with thickness design variable from 1.3 mm to 1.5 mm had comparative low stress levels.