Browse > Article
http://dx.doi.org/10.1016/j.net.2019.12.030

The effect of peak cladding temperature occurring during interim-dry storage on transport-induced cladding embrittlement  

Kim, Kyu-Tae (Dongguk University, Dept. of Nuclear and Energy System Engineering)
Publication Information
Nuclear Engineering and Technology / v.52, no.7, 2020 , pp. 1486-1494 More about this Journal
Abstract
To evaluate transport-induced cladding embrittlement after interim-dry storage, ring compression tests were carried out at room temperature(RT) and 135 ℃. The ring compression test specimens were prepared by simulating the interim-dry storage conditions that include four peak cladding temperatures of 250, 300, 350 and 400 ℃, two tensile hoop stresses of 80 and 100 MPa, two hydrogen contents of 250 and 500 wt.ppm-H and a cooling rate of 0.3 ℃/min. Radial hydride fractions of the ring specimens vary depending on those interim-dry storage conditions. The RT compression tests generated lower offset strains than the 135 ℃ ones. In addition, the RT and 135 ℃ compression tests indicate that a higher peak cladding temperature, a higher tensile hoop stress and the lower hydrogen content generated a lower offset strain. Based on the embrittlement criterion of 2.0% offset strain, an allowable peak temperature during the interim-dry storage may be proposed to be less than 350 ℃ under the tensile hoop stress of 80 MPa at the terminal cool-down temperature of 135 ℃.
Keywords
Peak cladding temperature; Cladding hoop stress; Radial hydride fraction; Ring compression tests; Offset strain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ANL, Examination of Spent PWR Fuel Rods after 15 Years in Dry Storage, NUREG/CR-6831, 2003.
2 H. Chung, Understanding hydride- and hydrogen-related processes in high-burnup cladding in spent-fuel storage and accident situations, in: Proceedings of the International Meeting on LWR Fuel Performance, Orlando, FL, U.S.A., 2004.
3 K. Colas, A. Motta, J. Almer, M. Daymond, M. Kerr, A. Banchik, In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation, Acta Mater. 58 (2010) 6575.   DOI
4 S. Yagnik, R. Kuo, Y. Rashid, A. Machiels, R. Yang, in: Proceedings of the 2004 International Meeting on LWR Fuel Performance (2004), 2004, pp. 191-199.
5 H. Chu, S. Wu, K. Chien, R. Kuo, Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding, J. Nucl. Mater. 362 (2007) 93-103.   DOI
6 H. Kim, I. Kim, S. Park, J. Park, Y. Jeong, Evaluation of hydride effect on fuel cladding degradation, Kor. J. Met. Mater. 48 (2010) 717.   DOI
7 H. Cha, K. Jang, K. Kim, An allowable cladding peak temperature for spent nuclear fuels in interim dry storage, J. Nucl. Mater. 498 (2018) 409-420.   DOI
8 P. Vizcaino, P.B. Bozzano, A.V. Flores, A.D. Banchik, R.A. Versaci, R.O. Rios, in: Hydrogen Solubility and Microstructural Changes in Zircaloy-4 Due to Neutron Irradiation,16th International Symposium of the Zirconium in the Nuclear Industry, Chengdu, China, May 9 to 13, 2010.
9 J. Kim, T. Kim, D. Kook, Y. Kim, Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding, J. Nucl. Mater. 456 (2015) 235-245.   DOI
10 R. Singh, R. Kishore, S. Singh, T. Ainha, B. Kashyap, Stress-reorientation of hydrides and hydride embrittlement of Zre2.5 wt% Nb pressure tube alloy, J. Nucl. Mater. 325 (2004) 26.   DOI
11 R. Singh, M. Lala Mikin, G. Dey, D. Sah, I. Batra, P. Stahle, Influence of temperature on threshold stress for reorientation of hydrides and residual stress variation across thickness of Zr-2.5Nb alloy pressure tube, J. Nucl. Mater. 359 (2006) 208.   DOI
12 W. Qin, J. Szpunar, J. Kozinski, J. Kozinski, Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: a theoretical analysis, Acta Mater. 60 (2012) 4845.   DOI
13 H. Chung, Proc. Int. Topical Meeting on Light Water Reactor Fuel Performance, U.S.A., Park City, Utah, 2000, p. 325.
14 M.C. Billone, T.A. Burtseva, R.E. Einziger, Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater. 433 (2013) 431-448.   DOI
15 S. Min, J. Won, K. Kim, Terminal cool-down temperature-dependent hydride reorientation in Zr-Nb Alloy claddings under dry storage conditions, J. Nucl. Mater. 448 (2014) 172-183.   DOI
16 S. Kim, S. Kwon, Y. Kim, The effect of texture variation on delayed hydride cracking behavior of Zr-2.5%Nb plate, J. Nucl. Mater. 273 (1999) 52-59.   DOI
17 G. Bertolino, G. Meyer, J.P. Ipina, Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4, J. Nucl. Mater. 320 (2003) 272-279.   DOI
18 A. Varias, A. Massih, Simulation of hydrogen embrittlement in zirconium alloys under stress and temperature gradients, J. Nucl. Mater. 279 (2000) 273-285.   DOI
19 J. Bai, N. Gilbon, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-4 plate: Part II. interaction between the tensile stress and the hydride morphology, Metall. Mater. Trans. A 25A (1994) 1199-1208.
20 B. Cox, Y. Wong, A hydrogen uptake micro-mechanism for Zr alloys, J. Nucl. Mater. 270 (1999) 134-146.   DOI
21 S. Min, M. Kim, K. Kim, Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings, J. Nucl. Mater. 441 (2013) 306-314.   DOI
22 USNRC, Cladding considerations for the transportation and storage of spent fuel, SFST-ISG-11 revision 3 (2003).
23 K. Kimura, Integrity criteria of spent fuel for dry storage in Japan, in: International Seminar on Spent Fuel Storage(ISSF), Tokyo, Japan, 2010.
24 M. Louthan Jr., R.P. Marshall, Control of hydride orientation in Zircaloy, J. Nucl. Mater. 9 (1963) 170-184.   DOI
25 G. Parry, W. Evans, Occurrence of ductile hydrides in Zircaloy-2, Nucleonics 22 (1964) 117.