• Title/Summary/Keyword: compression sleeve

Search Result 18, Processing Time 0.023 seconds

Theoretical study of sleeved compression members considering the core protrusion

  • Zhang, Chenhui;Deng, Changgen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.783-792
    • /
    • 2018
  • This paper presents a detailed theoretical study of the sleeved compression members based on a mechanical model. In the mechanical model, the core protrusion above sleeve and the contact force between the core and sleeve are specially taken into account. Via the theoretical analyses, load-displacement relationships of the sleeved compression members are obtained and verified by the experimental results. On the basis of the core moment distribution changing with the increase of the applied axial load, failure mechanism of the sleeved compression members is assumed and proved to be consistent with the experimental results in terms of the failure modes and the ultimate bearing capacities. A parametric study is conducted to quantify how essential factors including the core protrusion length above sleeve, stiffness ratio of the core to sleeve, core slenderness ratio and gap between the core and sleeve affect the mechanical behaviors of the sleeved compression members, and it is concluded that the constrained effect of the sleeve is overestimated neglecting the core protrusion; the improvement of ultimate bearing capacity for the sleeved compression member is considered to be decreasing with the decrease of the core slenderness ratio and for the sleeved compression member with core of small slenderness ratio, small gap and small stiffness ratio are preferred to obtain larger ultimate bearing capacity and stiffness.

A Study on the Application of Medical Compression Arm Sleeves Using a MRT(Moisture Responded Transformable) Fibers (MRT(Moisture Responded Transformable)섬유의 의료용 압박소매 적용에 관한 연구)

  • Cho, Daehyun;Jung, Taedu;Park, Eunhee;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, the application of a medical compression sleeve of Moisture Responded Transformable(MRT) fibers to the treatment of lymphedema after surgery in breast cancer patients was investigated. MRT fibers were manufactured with PET and Nylon6 bi-component cross-section yarns, and compression sleeves of sleeves 1, 2, 3, and 4 were knitted in order of size, and then the physical properties and clinical tests were evaluated. As a result, the pressure of compression sleeve in wrinkle was the lowest in sleeve 1 with 3.81 kPa, and the highest in sleeve 4 with 5.22 kPa. Elastic recovery rate is that all parts except the top of the sleeve 1 exhibited 100%. The air permeability was good at 12.1 ~ 16.1 cm3/cm2/sec, and peeling was also comparatively excellent as grade 3. In addition, the weight of the compression sleeves 1, 2, and 3 decreased as 18.3 ~ 23.0 g/m2 depend on size, while the compared sample was heavier with 17.39 ~ 32.61 g/m2. In lymphoscintigraphy test, it was confirmed that the function of remaining lymph node was good in all patients. Although there were no differences between samples in skin irritation and tightness in wearing comfort, the manufactured sleeves showed better fit, lightness, fashion and breathability than the comparable sleeves.

The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures (래티스 돔 구조물의 탄소성 거동 특성에 관한 연구)

  • Park, Chul-Ho;Han, Sang-Eul;Yang, Jea-Guen
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF

An Experimental Study on the Performance of Compression-type Anchor with various inner shapes for CFRP Tendons (CFRP 긴장재용 압착식 정착구의 내부형상별 정착성능 실험 연구)

  • Jung, Woo-Tak;Lee, Seung-Joo;Park, Young-Hwan;Hwang, Geum-Sic
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.321-324
    • /
    • 2008
  • This paper presents the results of the performance of compression-type anchor for CFRP tendon. As the results of previous tests, the principal variables for enhancing performance of anchor were sleeve dimensions, inserts, compression pressure, etc. A total of 18 specimens were tested for the performance of compression-type anchor with various inner shapes. Test results revealed that the length of sleeve increased along with the performance of anchor up to 18-22%. Also, the performance of anchor was susceptible to the length of sleeve compared to the surface treatment with the oxide.

  • PDF

An Experimental Study on the Performance of Compression-Type Anchor for CFRP Tendons (CFRP 긴장재용 압착형 정착장치의 정착성능에 관한 실험적 연구)

  • Jung, Woo-Tai;Lee, Seung-Joo;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.611-618
    • /
    • 2008
  • CFRP (carbon fiber reinforced polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Since CFRP tendons are vulnerable to transverse pressure and stress concentration, the conventional anchorage system used for steel tendons can create an unreliable load carrying capacity and may result in a premature failure. Therefore, it is necessary to develop the anchorage system that is well suited for CFRP tendons. There are many types of anchorage systems for CFRP tendons, which can be classified into three types: wedge-type anchorage, bond-type anchorage, and compression-type anchorage. This paper deals with the compression-type anchorage system manufactured through swaging technology. Based on the previous test results performed by the authors, the dimension of anchorage sleeve, the use and non-use of the insert, and the compression pressure on the sleeve have been selected as the major parameters affecting the performance of the compression-type anchorage. Some anchorage sleeves have been tapered to reduce the stress concentration. Test results revealed that the performance of the anchorage system depends mainly on the dimension and the compression pressure. It has been verified that the tapered sleeve can effectively reduce the stress concentration.

Research on CR/Nylon 6 Cord Rubber Sleeve of Rubber Air Spring (고무 공기 스프링용 CR/Nylon 6 코드 고무 슬리브에 대한 연구)

  • Seo, Jae-Chan;Kim, Dae-Jin;Park, Hae-Youn;Seo, Kwan-Ho
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.293-304
    • /
    • 2014
  • Rubber air spring (RAS) is a special suspension device for the industries of automobile, railroad car and other transportation. A RAS serves as a spring component with the elastic effect of compression and expansion of air in a composite rubber bag. The main component of RAS is the rubber sleeve. Rubber sleeve is the composite which is made up of combination of chloroprene rubber (CR) and nylon 6 cord, and the adhesive strength between CR and nylon 6 cord is very important. In this study, considering the effects of additives in rubber sleeve, various physical properties were tested to find the optimal combination of composition and conditions. Further, in order to select the optimum orientation of the reinforcing fibers, numerical analysis was performed using the finite elements method. After assembling all components of RAS, it was mounted on an actual vehicle, and then it was tested air leakage, fatigue life and fundamental properties.

Study on the Wearing Conditions of Weight Training Compression Wear for Men in their 20s (웨이트 트레이닝 활동을 위한 20대 남성 컴프레션웨어 착의 실태)

  • Kim, Mira;Kim, Dong-Eun;Choi, Hei Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.5
    • /
    • pp.775-787
    • /
    • 2016
  • This study examined the wearing conditions of compression wear for weight training. Compression wear has recently received significant attention from the public and athletes as high-level functional sportswear. The survey was conducted on 373 men in their 20s for general information on purchase behavior, preferred brand, function, and preferred design. The majority of participants (n=181) were aware of the function of compression wear. The most selected reason for wearing compression wear was for its convenience during sports activities. Respondents had the greatest preference for designs with a round neckline, regular leggings type, upper arm-length sleeve, and thigh-length bottom. Respondents also wanted a stronger compression in the core muscle part (abdomen, back, and waist).

Effect of Wearing a Thermal Compression Sleeve on Isokinetic Strength and Muscle Activity of Wrist Flexors and Extensors

  • Kim, Ki Hong;Jeong, Hwan Jong;Hong, Chan Jeong;Kim, Hyun Sung;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.183-191
    • /
    • 2022
  • The purpose of this study, the wearing conditions of functional pressure clothing applied with the thermotherapy device were determined by three types (NW, CW, TCW) and the difference in isokinetic strength, muscle activity around the forearm was investigated and the effects of products mixed with thermotherapy and pressure treatment were verified. Ten men in their 20s were selected as subjects, and all subjects were randomly assigned three wearing conditions, and wrist flexion/extension exercise was performed at 30° and 90° angular velocity in isokinetic equipment. Peak torque, average power, and EMG were measured during exercise in all conditions. For peak torque, CW was significantly highest at velocity of 30°/sec flexion. Average power showed no significant difference by condition. In the angular velocity of 90°/sec, flexion was significantly higher in CW and TCW than in NW. As a result, wearing clothes with pressure effect and heat effect can show high efficiency in high muscle strength development and fast contraction activity during low speed exercise, and it is thought that it can show improvement of exercise ability through efficient recruitment of motor unit.

Analysis of Compression Characteristics of the Steel Plate-Concrete Wall Structures with Openings (개구부가 있는 강판콘크리트 벽체의 압축특성 분석)

  • Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.245-256
    • /
    • 2012
  • The objective of this study is to investigate the effect of the openings on the structural behavior of SC walls. The test parameters were with or without the reinforcing of openings and sleeve thickness. The common failure showed that the crack in the concrete progressed with the plate's local buckling between the shear connectors. The failure of the openings showed that the vertical wall of the sleeve buckled toward the opening inside. The plate buckling load showed a similar value with or without the sleeve of the opening, respectively. However, the maximum compressive strength of the specimen without the opening was higher than that of specimen with the opening.

Finite Element Analysis of Swaging Process for Power Steering Hose (자동차용 파워스티어링 호스의 스웨이징 공정 유한요소해석)

  • Roh, Gi-Tae;Jeon, Do-Hyung;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.747-754
    • /
    • 2004
  • The nonlinear finite element analysis for deformation characteristics of a power steering hose during the swaging process is performed in order to investigate the stress and the strain levels of the hose components. Power steering hose consists of components such as rubber hose, nylon, nipple and sleeve. Moreover, the numerical analysis requires the consideration of material, geometry and boundary nonlinearities. To evaluate the rubber hose strength, the measured stresses and strains are compared with tension and compression test data. Contact force is also a principal factor to examine whether rubber hose is break away from sleeve and nipple or not.