• Title/Summary/Keyword: compound type

Search Result 1,060, Processing Time 0.031 seconds

ffect of Semen Perillae herbal acupuncture on the type 1 hypersensitivity (소자약침(蘇子藥鍼)이 Type 1 Hypersensitivity에 미치는 영향)

  • Song, Se-Hoon;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.25 no.1
    • /
    • pp.213-227
    • /
    • 2008
  • Objectives : We studied on anti-allergic effects of Semen Perillae Herbal Acupuncture(SPHA) and Semen Perillae Herbal Acupuncture Solution(SP). Methods : In vivo, Animals were herbal-acupunctured SPHA at both ST36 three times for 5 days. Then, we investigated compound 48/80-induced active systemic anaphylaxis (ASA) using ICR mice and anti-DNP IgE-induced passive cutaneous anaphylaxis (PCA) using Sprague Dawley rat. In vitro, we measured cell viability, b-hexosaminidase release, IL-4 and TNF-a from RBL-2H3 cells after treatment of SP of various concentrations. Results : In vivo, SPHA pretreatments at both ST36 inhibited compound 48/80-induced ASA. PCA was inhibited by SPHA pretreatments at both ST36 and optional points. In vitro, SP treatments were not affect on cell viability and inhibited b-hexosaminidase release, IL-4 and TNF-a. Conclusions : These results suggest that SPHA and SP may be beneficial in the inhibition of allergic inflammatory response.

  • PDF

Scalarane-type Sesterterpenes from the Philippines Sponge Hyrtios sp.

  • Choi, Jae-Hyeong;Lee, Hyi-Seung;Campos, Wilfredo L.
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • The marine sponge Hyrtios sp. collected in the Philippines was extracted and partitioned. The resulting organic layer was purified by C18 reversed-phase column chromatography and HPLC to achieve the separation of nine scalarane-type sesterterpenes, including one new compound with eight known scalarane analogs. The chemical structures of the isolated compounds 1-9 were elucidated by 1D and 2D NMR and MS data analysis. All nine compounds were evaluated for their antibacterial activities against three Gram-positive and three Gram-negative bacteria. The compound 3 exhibited potent antibacterial activities against Bacillus subtilis and Micrococcus luteus. The compounds 7 and 9 displayed considerable activities against Bacillus subtilis and the others had moderate results.

Microstructure and Mechanical Properties of Mg-Zn-Y-Yb Alloys Produced by Consolidation of Rapidly Solidified Ribbons

  • Sakamoto, Yoshihito;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1045-1047
    • /
    • 2006
  • Fabrication of $Mg_{95.75}Zn_1Y_3Yb_{0.25}$ bulk alloy has been performed through the consolidation of rapidly solidified ribbons. The $Mg_{95.75}Zn_1Y_3Yb_{0.25}$ bulk alloy exhibited excellent mechanical properties, high tensile yield strength of 530 MPa, and large elongation of 3 %. Microstructure of the alloy was characterized by equiaxed fine grains that consist of -Mg, long period ordered (LPO) structure phase, and $Mg_5RE$-type cubic compound. The strengthening of the alloys may be due to fine grains with LPO structure phase and $Mg_5RE$-type compound.

  • PDF

Effect of Zinc Ion Containing ZDBC on the Vulcanization and Mechanical Properties of Silica Filled Natural Rubber (아연이온이 포함된 ZDBC 촉진제가 실리카로 충전된 천연고무 복합소재의 가황 및 물성에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.406-410
    • /
    • 2014
  • Zinc ion containing thiuram type accelerator zinc dibutyldithiocarbamate (ZDBC) was compared to other thiuram type accelerators (tetramethylthiuram disulfide (TMTD) and dipentamethylenethiuram tetrasulfide (DPTT)) in silica filled natural rubber (NR) compound upon vulcanization and mechanical properties (modulus, tensile strength, and elongation %). ZDBC added compound showed the fastest cure time (t10) and the highest reinforcement index (R.I.) among them and showed a marching behavior. The mechanism was reviewed and a new mechanism was proposed.

The Crystal Structure of Naproxen Sodium, ($C_{14}H_{13}O_3Na$), A Non-steroidal Antiinflammatory Agent

  • Kim, Yang-Bae;Park, Il-Yeong;Lah, Woon-Ryong
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.166-173
    • /
    • 1990
  • The structure of the anti-inflammatory agent, naproxen sodium was determined by single crystal X-ray diffraction analysis. Crystal of the compound, which was recrystallized from methanol solution, is nomoclinic, space group $P2_1$ with a = 21. 177(6), b = 5.785(2), c = 5.443(2) $\AA, \beta$ = 91.41(3)$\{\circ}$ and Z = 2. The calculated density is 1.346; the observed value is nements based on 1093 reflections ($F\geq3\sigma$(F)) gave the final R value of 0.043. There are of one water per one compound molecule in the crystal. The carboxyl group of the molecule is nearly perpendicular to the naphthalene ring. The molecules are arranged along with the screw axis, and stabilized by five 0...Na type interactions. The molecule retains nearly same dimensions and similar conformation compared to its parent compound, naproxen, except for the torsion angles around C(5)-C(11) bond.

  • PDF

A Study on the of Intermetallic compound and shear strength of Sn3.5Ag0.7Cu ball with interface position (Sn3.5Ag0.7Cu 솔더의 계면위치에 따른 금속간 화합물과 강도 연구)

  • 신규식;박지호;정재필
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.47-52
    • /
    • 2002
  • Intermetallic compound on the soldered interface plays important role on the bondability and mechanical properties of soldered joint. The formation of intermetallic compounds are influenced by many factors such as temperature, holding time, base metals and so on. On this study the effect of number of reflow times on the intermetallic growth was investigated. For the experimental materials, Sn-3.5Ag-0.7Cu solder ball of 0.3mm diameter and RMA-type flux were used. Thickness of intermetallic compound of solder ball by 2nd reflow showed nearly 60% higher than that of 1st reflow, and shear strength showed 10% higher value. Thickness and shear strength according to the position of interface such as upper side or lower side between two substrates were also investigated.

DECOMPOSITION OF HIGHER ORGANIC COMPOUND IN AN ATMOSPHERIC PRESSURE NON-EQUILIBRIUM PLASMA

  • Kitokawa, Kazutoshi;Itou, Akihito;Sugiyama, Kazuo
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.593-598
    • /
    • 1996
  • Previously, in trying to prepare perovskite type oxide powders by microwave heating, we found out a non-equilibrium argon plasma is generated around the powders and discharge continues stable at atmospheric pressure. In this study, we tried the plasma decomposition of heat-stable higher organic compound such as palmitic acid which is the principal constituent of the fimger fats. It was proved that suitable amount of coexistence of oxygen radicals into the argon flow accelerates the decomposition of palmitic acid. The argon-oxygen mixed gas plasma was able to perform a complete elimination of higher organic compound.

  • PDF

Effect of Processing Conditions of ITY on the Physical Properties of Compound Yarn for New Synthetic Fabrics(I) (ITY 제조공정조건이 신합섬용 복합사의 물성에 미치는 영향(I))

  • 이상정;김승진;한원희;노태철
    • Textile Coloration and Finishing
    • /
    • v.12 no.5
    • /
    • pp.273-279
    • /
    • 2000
  • Interlace textured yarn was developed in order to increase weaving process efficiency. Today, interlace texturing is very useful method of manufacturing the high added value compound yarns for new synthetic fabrics. In this research, new silky type high added value compound yarns were. manufactured by interlace texturing technology and tested their properties. The object of this research is to investigate the relationship between interlace textured yarn properties and processing parameters that is air pressure, yarn tension and take-up speed. The original filament yarns used were TTD(Thick & Thin Semi-Dull) 110d/72f and SCD(Semi-Dull Cation Dyeable) 75d/36f. 27 specimens were manufactured and tested for their physical properties-nip density, tensile properties, multi-step shrinkage test and surface structure by SEM. The air pressure was main process condition to change properties of interlace textured yarns. And interlace textured process had influence on weaving preparation process, weaving, knitting and so on. It has some influence on shrinkage properties of dyeing and finishing processes.

  • PDF

Effects of Carbon Black Content and Vulcanization Type on Cure Characteristics and Dynamic Mechanical Property of Styrene-Butadiene Rubber Compound

  • Changwoon Nah;Kim, Wan-Doo;Lee, Seag
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.157-163
    • /
    • 2001
  • The influences of carbon black loading and cure type on the cure characteristics including kinetics and dynamic mechanical properties were investigated for a styrene-butadiene rubber (SBR). The rate constants of accelerated sulfur vulcanization reaction at three different temperatures were determined using a cure rheometer, and they were compared with those from the direct measurement of sulfur concentration. The strain softening behavior under dynamic deformation, known as the Payne effect was also discussed depending on the carbon black loading and cure type.

  • PDF

Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology

  • Cho, Seong-Jae;Sun, Min-Chul;Kim, Ga-Ram;Kamins, Theodore I.;Park, Byung-Gook;Harris, James S. Jr.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.182-189
    • /
    • 2011
  • In this work, a tunneling field-effect transistor (TFET) based on heterojunctions of compound and Group IV semiconductors is introduced and simulated. TFETs based on either silicon or compound semiconductors have been intensively researched due to their merits of robustness against short channel effects (SCEs) and excellent subthreshold swing (SS) characteristics. However, silicon TFETs have the drawback of low on-current and compound ones are difficult to integrate with silicon CMOS circuits. In order to combine the high tunneling efficiency of narrow bandgap material TFETs and the high mobility of III-V TFETs, a Type-I heterojunction tunneling field-effect transistor (I-HTFET) adopting $Ge-Al_xGa_{1-x}As-Ge$ system has been optimized by simulation in terms of aluminum (Al) composition. To maximize device performance, we considered a nanowire structure, and it was shown that high performance (HP) logic technology can be achieved by the proposed device. The optimum Al composition turned out to be around 20% (x=0.2).