• Title/Summary/Keyword: compound metal

Search Result 533, Processing Time 0.024 seconds

Effect of repetitive firing on passive fit of metal substructure produced by the laser sintering in implant-supported fixed prosthesis

  • Altintas, Musa Aykut;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2020
  • PURPOSE. The aim of the present study was to investigate the passive fit of metal substructure after repetitive firing processes in implant-supposed prosthesis. MATERIALS AND METHODS. Five implants (4 mm diameter and 10 mm length) were placed into the resin-based mandibular model and 1-piece of screw-retained metal substructure was produced with the direct metal laser sintering (DMSL) method using Co-Cr compound (n = 10). The distance between the marked points on the multiunit supports and the marginal end of the substructure was measured using a scanning electron microscope (SEM) at each stage (metal, opaque, dentin, and glaze). 15 measurements were taken from each prosthesis, and 150 measurements from 10 samples were obtained. In total, 600 measurements were carried out at 4 stages. One-way ANOVA test was used for statistical evaluation of the data. RESULTS. When the obtained marginal range values were examined, differences between groups were found to be statistically significant (P<.001). The lowest values were found in the metal stage (172.4 ± 76.5 ㎛) and the highest values (238.03 ± 118.92 ㎛) were determined after glaze application. When the interval values for groups are compared with pairs, the differences between metal with dentin, metal with glaze, opaque with dentin, opaque with glaze, and dentin with glaze were found to be significant (P<.05), whereas the difference between opaque with metal was found to be insignificant (P=.992). CONCLUSION. Passive fit of 1-piece designed implant-retained fixed prosthesis that is supported by multiple implants is negatively affected by repetitive firing processes.

Emission Detection of Mercuric Ions in Aqueous Media Based-on Dehybridization of DNA Duplexes

  • Oh, Byul-Nim;Wu, Qiong;Cha, Mi-Sun;Kang, Hee-Kyung;Kim, Jin-Ah;Kim, Ka-Young;Rajkumar, Eswaran;Kim, Jin-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3223-3228
    • /
    • 2011
  • To quantify the presence of mercuric ions in aqueous solution, double-stranded DNA (dsDNA) of poly(dT) was employed using a light switch compound, $Ru(phen)_2(dppz)^{2+}$ (1) which is reported to intercalate into dsDNA of a right-handed B-form. Addition of mercuric ions induced the dehybridization of poly(dT)${\cdot}$poly(dA) duplexes to form a hairpin structure of poly(dT) at room temperature and the metal-to-ligand charge transfer emission derived from the intercalation of 1 was reduced due to the dehybridization of dsDNA. As the concentration of $Hg^{2+}$ was increased, the emission of 1 progressively decreased. This label-free emission method had a detection limit of 0.2 nM. Other metal ions, such as $K^+$, $Ag^+$, $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, $Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Cr^{3+}$, $Fe^{3+}$, had no significant effect on reducing emission. This emission method can differentiate matched and mismatched poly(dT) sequences based on the emission intensity of dsDNA.

Impact of Copper Densities of Substrate Layers on the Warpage of IC Packages

  • Gu, SeonMo;Ahn, Billy;Chae, MyoungSu;Chow, Seng Guan;Kim, Gwang;Ouyang, Eric
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.59-63
    • /
    • 2013
  • In this paper, the impact of the copper densities of substrate layers on IC package warpage is studied experimentally and numerically. The substrate strips used in this study contained two metal layers, with the metal densities and patterns of these two layers varied to determine their impacts. Eight legs of substrate strips were prepared. Leg 1 to leg 5 were prepared with a HD (high density) type of strip and leg 6 to leg 8 were prepared with UHD (ultra high density) type of strip. The top copper metal layer was designed to feature meshed patterns and the bottom copper layer was designed to feature circular patterns. In order to consider the process factors, the warpage of the substrate bottom was measured step by step with the following manufacturing process: (a) bare substrate, (b) die attach, (c) applying mold compound (d) and post reflow. Furthermore, after the post reflow step, the substrate strips were diced to obtain unit packages and the warpage of the unit packages was measured to check the warpage trends and differences. The experimental results showed that the warpage trend is related to the copper densities. In addition to the experiments, a Finite Element Modeling (FEM) was used to simulate the warpage. The nonlinear material properties of mold compound, die attach, solder mask, and substrate core were included in the simulation. Through experiment and simulation, some observations were concluded.

Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (I) (플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구(I) -후막 표면 합금화층의 형성조건과 그 조직-)

  • ;中田一博;;;松田福久
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • Effect of Cr, Cu and Ni metal powders addition on the alloyed layer of aluminum alloy (AC2B) has been investigated with the plasma transferred arc (PTA) overlaying process. The overlaying conditions were 125-200A in plasma arc current, 150mm/min in process speed and 5-20g/min in powder feeding rate. Main results obtained are summarized as follows: 1) It was made clear that formation of thick surface alloyed layer on aluminum alloy is possible by PTA overlaying process. 2) The range of optimum alloying conditions were much wider in case of Cu and Ni powder additions than the case of Cr powder addition judging from the surface appearance and the bead macrostructure. 3) Alloyed layer with Cu showed almost the homogeneous microstructure through the whole layer by eutectic reaction. alloyed layers with Cr and Ni showed needle-like and agglomerated microstructures, the structure of which has compound layer in upper zone of bead by peritectic and eutectic-peritectic reactions, respectively. 4) Microconstituents of the alloyed layer were analyzed as A1+CrA $l_{7}$ eutectics, C $r_{2}$al sub 11/, CrA $l_{4}$, C $r_{4}$A $l_{9}$ and C $r_{5}$A $l_{*}$ 8/ for Cr addition, Al+CuA $l_{2}$(.theta.) eutectics and .theta. for Cu addition, and Al+NiA $l_{3}$ eutectics. NiA $l_{3}$, N $i_{2}$A $l_{3}$ and NiAl for Ni addition. 5) Concerning defect of the alloyed layer, many blow holes were seen in Cr and Ni additions although there was lesser in Cu addition. Residual gas contents in blow hole for Cu and Ni alloyed layer were confirmed as mainly $H_{2}$ and a littie of $N_{2}$ Cracking was observed in compound zone of the alloyed layer in case of Cr and Ni addition but not in Cu alloyed layer.r.r.

  • PDF

Microstructures and Tensile Properties in Arc Brazed Joints of Ferritic Stainless Steel using Cu-8.6%Al Insert Metal (Cu-8.6wt%Al 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징 접합부의 미세조직과 인장성질)

  • Cho, Young-Ho;Chung, Chang-Eun;Kang, Myoung-Chang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.85-92
    • /
    • 2011
  • Microstructures and tensile properties in arc brazed joints of ferritic stainless steel, 429EM using Cu-8.6%Al insert metal was investigated as function of brazing current. The brazing speed was fixed at 800mm/min and brazing current varied in the range of 80A to 120A. The initial phase of filler metal was Cu single phase. However, the insert metal structures of brazed joints was composed of Cu matrix and intermetallic compound such as ${\gamma}_1(Al_4Cu_9)$, and flower-shape Fe-Cr. The fraction of ${\gamma}_1(Al_4Cu_9)$ phase was similar with 80A and 100A brazing currents while that of brazed with 120A was decreased. On the other hand, the fraction of Fe-Cr phase increased with increasing of the brazing current. A reaction layer at the base metal/insert metal interface was observed and this reaction layer was thickened with increasing of the brazing current. In the brazed joints with the current lower than 100A, crack was grew up along the interface which was perpendicular to the tensile stress, and then, passed through the insert metal in the final stage of fracture. As the brazing current increased to 120A, fracture occurred at the base metal.

Fabrication of Functional Microfiltration TiO2 Metal Membrane Using Anodization (산화피막 형성 기술을 이용한 기능성 정밀여과형 TiO2 금속막 개발)

  • Choi, Seungpil;Kim, Geontae;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.33-39
    • /
    • 2010
  • A self-organized nano-structured, photocatalytic $TiO_2$ membrane with large surface area of anatase crystallites was successfully fabricated by anodization. The nano-structured anodized $TiO_2$ membrane was characterized using EDX, SEM and XRD techniques and the effect of electrolyte type and concentration to fabricate $TiO_2$ metal membrane was also investigated. Regular nano tubular arrays were obtained By the EDX, SEM and XRD patterns, the anodized $TiO_2$ membrane showed the enhanced photocatalytic properties of anatase phase. Photocatalytic activities of fabricated $TiO_2$ metal membrane was also experimentally investigated as model compound of humic acid.

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.

Synthesis and Characterization of 1-Transition Metal Complex Substituted-2,3,4,5-Tetraphenyl-1-Silacyclopentadienyl Complexes and Generation of Transition Metal Complex-Substituted Silylene

  • Paek Cheolki;Ko Jaejung;Kong Youngkun;Kim, Chang Hwan;Lee Myong Euy
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.460-465
    • /
    • 1994
  • New silicon-monosubstituted (${\eta}^4$-2,3,4,5-tetraphenyl-l-silacyclopentadiene)transi tion metal complexes are described. (7-Alkyl-7-silanorbornadienyl)MLn(Alkyl=Methyl: MLn=CpRu$(CO)_2$: Alkyl=Methyl: MLn=CpNi(CO): Alkyl=Ethyl: MLn=CpNi(CO)) complexes were prepared from the corresponding silole-transition metal complexes with dimethylacetylenedicarboxylate. Cycloaddition products were obtained with 2,3-dimethyl-1,3-butadiene, 2,3-butanedione, and 1,4-benzoquinone through the ruthenium-substituted silylene. We have determined the crystal structure of (1-methyl-2,3,4,5-tetraphenyl-l-silacyclopentadien yl)cyclopentadienyldicarbonylruthenium by using graphite monochromated Mo-Ka radiation. The compound was crystallized in the monoclinic space group $P2_{1/c}$ with a = 9.838(l), b = 15.972(3), c = 18.327(3) ${\AA}$, and ${\beta}= 94.28(l)^{circ}$. The ruthenium moiety CpRu$(CO)_2$ on silicon is in an axial position.

Design of a High Performance 32$\times$32-bit Multiplier Based on Novel Compound Mode Logic and Sign Select Booth Encoder (새로운 복합모드로직과 사인선택 Booth 인코더를 이용한 고성능 32$\times$32-bit 곱셈기의 설계)

  • Kim, Jin-Hwa;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • In this paper, a novel compound mode logic based on the advantage of both CMOS logic and pass-transistor logic(PTL) is proposed. From the experimental results, the power-delay products of the compound mode logic is about 22% lower than that of the conventional CMOS logic, when we design a full adder. With the proposed logic, a high performance 32$\times$32-bit multiplier has been fabricated with 0.6um CMOS technology. It is composed of an improved sign select Booth encoder, an efficient data compressor based on the compound mode logic, and a 64-bit conditional sum adder with separated carry generation block. The Proposed 32$\times$32-bit multiplier is composed of 28,732 transistors with an active area of 1.59$\times$1.68 mm2 except for the testing circuits. From the measured results, the multiplication time of the 32$\times$32-bit multiplier is 9.8㎱ at a 3.3V power supply, and it consumes about 186㎽ at 100MHz.

  • PDF

Fraccture Behavior of Recation Squeeze Cast ($AI_20_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한(AI203 . SIO2+Ni)/Al하이브리드 금속복합재료의 파괴거동 특성)

  • 김익우;김상석;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.67-70
    • /
    • 2000
  • Mechanical properties of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of (15%$AI_20_3{\cdot}SiO_2$)/Al composites. Intermetallic compound formed by reaction between molten aluminum and reinforcing powder was uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3$NI using EDS and X-ray diffraction analysis. Microhardness and flexural strength of hybrid composites were higher than that of (15%$AI_20_3{\cdot}SiO_2$)/Al Composite. In-Situ fracture tests were Conducted on (15%$AI_20_3{\cdot}SiO_2$)/Al Composites and (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites to identify the microfracture process. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al composites, microcracks were initiated mainly at the short fiber / matrix interfaces. As the loading was continued, the crack propagated mainly along the separated interfacial regions and the well developed shear bands. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites, microcracks were initiated mainly by the short fiber/matrix interfacial debonding. The crack proceeded mainly through the intermetallic compound clusters

  • PDF