DOI QR코드

DOI QR Code

Emission Detection of Mercuric Ions in Aqueous Media Based-on Dehybridization of DNA Duplexes

  • Oh, Byul-Nim (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Wu, Qiong (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Cha, Mi-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kang, Hee-Kyung (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Jin-Ah (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Ka-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Rajkumar, Eswaran (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Jin-Heung (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2011.06.08
  • Accepted : 2011.07.12
  • Published : 2011.09.20

Abstract

To quantify the presence of mercuric ions in aqueous solution, double-stranded DNA (dsDNA) of poly(dT) was employed using a light switch compound, $Ru(phen)_2(dppz)^{2+}$ (1) which is reported to intercalate into dsDNA of a right-handed B-form. Addition of mercuric ions induced the dehybridization of poly(dT)${\cdot}$poly(dA) duplexes to form a hairpin structure of poly(dT) at room temperature and the metal-to-ligand charge transfer emission derived from the intercalation of 1 was reduced due to the dehybridization of dsDNA. As the concentration of $Hg^{2+}$ was increased, the emission of 1 progressively decreased. This label-free emission method had a detection limit of 0.2 nM. Other metal ions, such as $K^+$, $Ag^+$, $Ca^{2+}$, $Mg^{2+}$, $Zn^{2+}$, $Mn^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Cr^{3+}$, $Fe^{3+}$, had no significant effect on reducing emission. This emission method can differentiate matched and mismatched poly(dT) sequences based on the emission intensity of dsDNA.

Keywords

References

  1. Baughman, T. A. Environ. Health Perspect 2006, 114, 147. https://doi.org/10.1289/ehp.7048
  2. Virtanen, J. K.; Rissanen, T. H.; Voutilainen, S.; Tuomainen, T.-P. J. Nutr. Biochem. 2007, 18, 75. https://doi.org/10.1016/j.jnutbio.2006.05.001
  3. Vupputuri, S.; Longnecker, M. P.; Daniels, J. L.; Guo, X.; Sandler, D. P. Environ. Res. 2005, 97, 195. https://doi.org/10.1016/j.envres.2004.05.001
  4. Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149. https://doi.org/10.1002/tox.10116
  5. Onyido, I.; Norris, A. R.; Buncel, E. Chem. Rev. 2004, 104, 5911. https://doi.org/10.1021/cr030443w
  6. Morel, F. M. M.; Kraepiel, A. M. L.; Amyot, M. Annu. Rev. Ecol. Syst. 1998, 29, 543. https://doi.org/10.1146/annurev.ecolsys.29.1.543
  7. Halbach, S.; Kremers, L.; Willruth, H.; Mehl, A.; Elzl, G.; Wack, F. X.; Hickel, R.; Greim, H. Hum. Exp. Toxicol. 1997, 16, 667. https://doi.org/10.1177/096032719701601107
  8. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030. https://doi.org/10.1021/ja0557987
  9. Harris, H. H.; Pickering, I. J.; George, G. N. Science 2003, 301, 1203. https://doi.org/10.1126/science.1085941
  10. Brummer, O.; La Clair, J. J.; Janda, K. D. Bioorg. Med. Chem. 2001, 9, 1067. https://doi.org/10.1016/S0968-0896(01)00049-9
  11. Boening, D. W. Chemosphere 2000, 40, 1335. https://doi.org/10.1016/S0045-6535(99)00283-0
  12. Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. J. Am. Chem. Soc. 2003, 125, 3418. https://doi.org/10.1021/ja0290779
  13. Harano, K.; Hiraoka, S.; Shionoya, M. J. Am. Chem. Soc. 2007, 129, 5300. https://doi.org/10.1021/ja0659727
  14. Liu, B.; Tian, H. Chem. Commun. 2005, 3156.
  15. Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. Angew. Chem. Int. Ed. 2005, 44, 4405. https://doi.org/10.1002/anie.200500583
  16. Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc. 2000, 122, 6769. https://doi.org/10.1021/ja0006292
  17. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 3418. https://doi.org/10.1021/ja0290779
  18. Liu, J.; Lu, Y. Angew. Chem. Int. Ed. 2007, 46, 7587. https://doi.org/10.1002/anie.200702006
  19. Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 43, 4300. https://doi.org/10.1002/anie.200454172
  20. Chiang, C.-K.; Huang, C.-C.; Liu, C.-W.; Chang, H.-T. Anal. Chem. 2008, 80, 3716. https://doi.org/10.1021/ac800142k
  21. Chen, P.; He, C. J. Am. Chem. Soc. 2004, 126, 728. https://doi.org/10.1021/ja0383975
  22. Fan, L.-J.; Zhang, Y.; Jones, W. E. Macromolecules 2005, 38, 2844. https://doi.org/10.1021/ma047983v
  23. Li, T.; Wang, E.; Dong, S. Chem. Commun. 2009, 580.
  24. Li, T.; Wang, E.; Dong, S. Chem. Commun. 2008, 3654.
  25. Li, D.; Wieckowska, A.; Willner, I. Angew. Chem. Int. Ed. 2008, 47, 3927. https://doi.org/10.1002/anie.200705991
  26. Liu, X.; Tang, Y.; Wang, L.; Zhang, J.; Song, S.; Fan, C.; Wang, S. Adv. Mater. 2007, 19, 1471. https://doi.org/10.1002/adma.200602578
  27. Kim, I. B.; Bunz, U. H. F. J. Am. Chem. Soc. 2006, 126, 728.
  28. Xue, X.; Wang, F.; Liu, X. J. Am. Chem. Soc. 2008, 130, 3244. https://doi.org/10.1021/ja076716c
  29. Lee, J.-S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2007, 46, 4093. https://doi.org/10.1002/anie.200700269
  30. Kong, R.-M.; Zhang, X.-B.; Zhang, L.-L.; Jin, X. Y.; Huan, S.-Y.; Shen, G.-L.; Yu, R.-Q. Chem. Commun. 2009, 5633.
  31. Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642. https://doi.org/10.1021/cr900228f
  32. Lincoln, P.; Norden, B. Chem. Commun. 1996, 2145.
  33. Tuite, E.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1997, 11, 239.
  34. Choi, M. S.; Yoon, M.; Baeg, J.-O.; Kim, J. Chem. Commun. 2009, 7419.
  35. Friedman, A. E.; Chambron, J.-C.; Sauvage, J.-P.; Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1990, 112, 4960. https://doi.org/10.1021/ja00168a052
  36. Murphy, C. J.; Arkin, M. R.; Ghatlia, N. D.; Bossmann, S. H.; Turro, N. J.; Barton, J. K. Science 1993, 262, 1025. https://doi.org/10.1126/science.7802858
  37. Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, A.; Tanaka, Y. Chem. Commun. 2008, 4825.
  38. Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. J. Am. Chem. Soc. 2007, 129, 244. https://doi.org/10.1021/ja065552h
  39. Li, T.; Li, B.; Wang, E.; Dong, S. Chem. Commun. 2009, 3551.
  40. Wang, Z.; Lee, J. H.; Lu, Y. Chem. Commun. 2008, 6005.
  41. Hiort, C.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1993, 115, 3448. https://doi.org/10.1021/ja00062a007

Cited by

  1. Radiation synthesized poly(n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles as LSPR-based optical sensor for mercury ions estimation vol.17, pp.7, 2015, https://doi.org/10.1007/s11051-015-3081-7