• 제목/요약/키워드: compound layer

검색결과 689건 처리시간 0.026초

$\textrm{N}_{G}$-Mon $o^{14}\textrm{C}$-methyl]-L-arginine의 합성 (Synthesis of $\textrm{N}_{G}$-Mon $o^{14}\textrm{C}$-methyl]-L-arginine)

  • 조영봉
    • Environmental Analysis Health and Toxicology
    • /
    • 제1권1호
    • /
    • pp.77-80
    • /
    • 1986
  • $N^{G}$ -Mono[$^{14}$ C-Methyl]-L-arginine을 방사선화학적 방법으로 mono [$^{14}$ C]-Methylamine 으로부터 합성한후 양이온 교환수지에 흡착시킨 다음 암모니아수로 용출시켜 정제하였으며 flavianic acid를 사용하여 결정상태로 얻었다. 한편 flavianate와 음이온 교환수지 를 함께 실온 이하의 온도에서 교반혼합함으로서 유리 상태의 amino acid를 쉽게 만들수 있으며 박층크로마토그라피, 박층전기영동 및 섬광분광분석법으로 순도를 조사하였다.

  • PDF

이온질화 및 질탄화 처리된 SCr430B 박판강의 인장 및 피로특성 (Tensile and High Cycle Fatigue Properties of Ion-nitrided and Nitro-carburized SCr430B Steels)

  • 박성혁;이종수
    • 소성∙가공
    • /
    • 제21권6호
    • /
    • pp.354-359
    • /
    • 2012
  • Effects of a nitriding treatment on the tensile and high cycle fatigue properties were investigated by conducting ion-nitriding and gas nitro-caburizing treatments on the spheroidized SCr430B medium-carbon steel and performing tensile and tension-tension high cycle fatigue tests. The nitrided samples showed much lower strength and ductility compared to those in the initial as-spheroidized state and premature fracture occurred at the hardened layers. The micro-voids in the compound layer caused fatigue crack initiation. Thus, the removal of the compound layer with micro-voids remarkably improved the fatigue resistance to even beyond that of the as-spheroidized sample.

Effects of Nano-sized Diamond on Wettability and Interfacial Reaction for Immersion Sn Plating

  • Yu, A-Mi;Kang, Nam-Hyun;Lee, Kang;Lee, Jong-Hyun
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.59-63
    • /
    • 2010
  • Immersion Sn plating was produced on Cu foil by distributing nano-sized diamonds (ND). The ND distributed on the coating surface broke the continuity of Sn-oxide layer, therefore leading to penetrate the molten solder through the oxide and retarding the wettability degradation during a reflow process. Furthermore, the ND in the Sn coating played a role of diffusion barrier for Sn atoms and decreased the growth rate of intermetallic compound ($Cu_6Sn_5$) layer during the solid-state aging. The study confirmed the importance of ND to improve the wettability and reliability of the Sn plating. Complete dispersion of the ND within the immersion Sn plating needs to be further developed for the electronic packaging applications.

A Quinolone Alkaloid, from the Aleurone Layer of Oryza sativa cv. Mihyangbyo, Inhibits Growth of Cultured Human Leukemia Cell

  • Chung, Ha-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제7권2호
    • /
    • pp.119-122
    • /
    • 2002
  • Oryza sativa cv. Mihyangbyo is one of several recently developed varieties of rice; characterized by high levels of aromatic components, which may increase its sensory and nutritional properties. In conjunction with our continuing investigation of bioactive components of improved grain varieties, a quinolone alkaloid was isolated from the n-butanol soluble fraction of the aleurone layer of Oryza sativa cv. Mihyangbyo (Gramineae) through activity-guided fractionation and isolation. The compound exhibited moderate antineoplastic activity in a human leukemia cell line (U937) with an $IC_{50}$/ value of 118.1 ug/mL, based on the MTT(3-[4, 5]dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) cell proliferation assay. The chemical structure of the functional compound was determined, based on physical and spectroscopic characteristics.

자동차용 아연 도금 강판과 알루미늄 합금의 접합 (Joining of Zinc Coated Steel and Aluminum Alloy for Car Body)

  • 이우람;이정현
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.145-150
    • /
    • 2011
  • There is problem to reduce the car body weight for improving fuel consumption and $CO_2$ generation. As one of the solution, the multi material car body concept using aluminum alloys and high strength steels is proposed recently. Therefore, new welding processes by which these dissimilar material can be joined in high reliability and productivity are demanded. Laser spot welding was developed for joining of dissimilar metals. In the present work, Laser spot welding of zinc coated steel and aluminum alloy was investigated, and the process parameters were studied. Otherwise, the influences of process parameters on the weldability, the formation of intermetallic compound layer and the mechanical properties have been investigated. When intermetallic compound layer thickness was more than 1mm, specimen was failure in the interface.

TLC에 의한 한국산 인삼과 서양상 페놀성 성분의 비교 (Comparison of Phenolic Components between Korean and American ginsengs by Thin-Layer Chromatography)

  • 위재준;신지영
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.91-95
    • /
    • 1998
  • The distribution of phenolic components of Korean ginseng (Panax ginseng KG) and American ginseng (Panax quinquefolium, AG) were compared by thin-layer chromatography (TLC). Silica gel TLC gave 3~4 spots, while $NH_2$ HPTLC 5~6 spots, which were colored by both $FeCl_3$/$K_3Fe(CN)_6$ and Folin-Ciocalteu. The distribution of phenolic components was quite different between KG and AG. Especially, a polyphenol (m.w. 578), which had been isolated from KG by the author, was not found in AG. This result suggests that the polyphenol could be used as an index compound for the differentiation of KG from AG.

  • PDF

산질화된 GC250의 화합물층 형성 및 내식성에 미치는 산화 온도의 영향 (Effect of Oxidation Temperature on Compound Layer Formation and Corrosion Resistance of Oxy-nitrided GC250)

  • 정민재;조균택;이원범
    • 열처리공학회지
    • /
    • 제37권5호
    • /
    • pp.207-214
    • /
    • 2024
  • This study examines the effects of post-oxidation treatment on the microstructure and corrosion resistance of GC250 cast iron. The nitriding process was conducted at 570℃ for 180 minutes with a fixed nitriding potential (Kn) of 1.5, followed by post-oxidation at 450℃, 500℃, and 550℃ for 120 minutes. The post-oxidized specimens showed increased surface hardness and case depth compared to the nitrided specimens, with a maximum surface hardness of approximately 890 HV0.1. The oxidation process increased the thickness of the nitrided layer by more than 3 ㎛, with the oxide layer thickness reaching up to 2.5㎛ as the oxidation temperature increased. XRD analysis identified the presence of ε-phase, γ'-phase, and Fe3O4 phase on the surface. Polarization tests revealed that the specimen treated at the highest oxidation temperature had a corrosion current density of 20.26 ㎂/cm2 and a corrosion potential of -0.22V, indicating enhanced corrosion resistance compared to the nitrided specimen. This improvement is attributed to the formation and increased thickness of the oxide layer, which enhances corrosion resistance. In conclusion, the oxide layer formed through post-oxidation treatment significantly improves the corrosion resistance of GC250 cast iron, with the effect becoming more pronounced at higher oxidation temperatures.

메탄/순산소 혼합층에서 edge flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마 이온 질화특성에 미치는 합금원소의 영향 [II플라즈마 이온 질화특성] (The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys. [II Plasma Ion Nitriding Characteristic])

  • 손동욱;이해후;성장현;박규섭;김창규;강창룡
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.76-81
    • /
    • 2005
  • The effect of micro-pulse plasma nitriding temperature and time on the case thickness, hardness and nitride formation in the surface of Fe-12Cr-22Mn-X alloy with 3% Co and 1% Ti alloys elements investigated. External compound layer and internal diffusion layer was constituted in plasma nitride case of Fe-12Cr-22Mn-X alloys and formed nitride phase such as ${\gamma}'-Fe4N\;and\;{\varepsilon}-Fe2-3N$. Case depth increased with increasing the plasma nitriding temperature and time. Surface hardness of nitrided Fe-12Cr-22Mn-X alloys obtained the above value of Hv 1,600 and case depth obtained the above value of $45{\mu}m$ in Fe-12Cr-22Mn-3Co alloy and $60{\mu}m$ in Fe-12Cr-22Mn-1Ti alloy. Wear-resistance increased with increasing plasma nitriding time and showing the higher value in Fe-12Cr-22Mn-1Ti alloy than Fe-12Cr-22Mn-3Co alloy.

  • PDF