• Title/Summary/Keyword: compound failure

Search Result 141, Processing Time 0.02 seconds

Experimental Study to Investigate the Factors Affecting Durability of Spalled Cement Concrete Pavements (스폴링이 발생한 콘크리트 포장의 내구성 영향인자 조사를 위한 실험적 연구)

  • Yoo, Tae Seok;Ryu, SungWoo;Kim, Jin Cheol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2018
  • PURPOSES : It is necessary to prevent premature failure of concrete pavements caused by durability problems. The purpose of this study was to find factors affecting the durability of concrete pavements, and suggest improvement methods for existing concrete mix design. METHODS : Factors influencing durability were derived from laboratory test data for common field failure conditions and main properties of concrete cores taken from the field. The improvement of concrete properties was investigated by evaluating the performance of existing and proposed mix proportion designs and curing methods. RESULTS : The compressive strength and the absorbing performance of the low Blaine cement and the high-strength mixture were better than those of the Type I cement. Wet curing showed better compressive strength, elastic modulus, coefficient of thermal expansion, and absorption performance than air curing or compound curing. As a result of comparing concrete cores collected in the field, the sections with good durability showed good performance in terms of resistance to chloride ion penetration, absorption, and initial absorption rate. CONCLUSIONS : The absorption performance was considered as a possible foactor affecting durability of cement concrete pavements as a result of field core tests. In order to improve the durability of the pavement concrete, it is necessary to improve the existing mixtures and curing methods.

Aging of Solid Fuels Composed of Zr and ZrNi Part 2: Kinetics Extraction for Full Simulation (Zr과 ZrNi로 구성된 고체연료의 노화 연구 Part 2: 화학반응식 추출 및 성능모사)

  • Han, Byungheon;Park, Yoonsik;Gnanaprakash, K.;Yoo, Jaeyong;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.14-27
    • /
    • 2020
  • Differential scanning calorimetry and numerical analysis were performed to estimate the performance degradation and ignition characteristics of the pyrotechnic device due to aging. The reaction kinetics extracted from the calorimetry are implemented into the numerical simulation of the igniter and the pyrotechnic delay, subjected to natural, thermal, and hygrothermal aging conditions. Also, combustion experiments are conducted to confirm that aging due to moisture is a major cause of performance failure of the pyrotechnic device as shown from the present numerical simulations.

A Case of Acute Intoxication with Glyphosate and Oxyfluorfen Containing Powder Herbicide ($Daejangun^{(R)}$) (Oxyfluoren이 함유된 입제 glyphosate 제초제(대장군) 급성 중독 1예)

  • Lee Seung Hee;Yi Kum Ho;Yoo Sung-Soo;Roh Heung-Keun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.3 no.2
    • /
    • pp.110-113
    • /
    • 2005
  • Glyphosate containing herbicides are an alternative to paraquat and have been widely used with increasing frequency in suicide attempts throughout Asia. It is an organophosphorus compound that is not a cholinesterase inhibitor. Daejangun powder consists of glyphosate ammonium, surfactant and another herbicide, oxyfluorfen. A 60-year-old man ingested about 300 g of Daejangun powder with 500 ml of water in a suicide attempt. He was brought to emergency room 6 hours after the ingestion and showed severe metabolic acidosis (pH 6.75), marked leukocytosis (WBC 35,800/$mm^3$), hypoglycemia (glucose 13 mg/dL) and increased liver enzymes (AST/ALT 1,683/418 IU/L). Later he developed aspiration pneumonia, acute renal failure and hyperchloremic acidosis. Upper gastrointestinal endoscopy which performed 5 days after the ingestion revealed corrosive injuries (grade 1) in both esophagus and stomach. However, intensive treatment with supportive measures improved the abnormal findings almost completely 4 weeks after the ingestion.

  • PDF

Failure Mechanism and Test Method for Reliability Standardization of Solder Joints (솔더조인트의 신뢰성 표준화를 위한 취성파괴 메커니즘 및 평가법 연구)

  • Kim, Kang-Dong;Huh, Seok-Hwan;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.85-90
    • /
    • 2011
  • With regard to reliability of solder joint, the significant failures include open defects that occurs from alignment problem, Head in Pillow by PCB's warpage, the crack of solder by CTE mismatch, and the crack of IMC layer by mechanical impact. Especially as PCB down-sizing and surface finish is under progress, brittle failure of IMC layer between solder bump and PCB pad becomes a big issue. Therefore, it requires enhancing the level of difficulty in the existing assessment method and improving the measurement through the study on the mechanism of IMC formation, growth and brittle failure. Under this circumstance, this study is intended to suggest the direction of research for improving the reliability on the crack such as improvement of IMC brittle fracture.

The relation of the bioprosthetic valve failure to its calcification (조직판막의 실패와 석회화에 관한 연구)

  • 홍유선
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.1001-1012
    • /
    • 1989
  • In 1968, Carpentier and his associates introduced glutaraldehyde as a compound for preparing cardiac tissue valve, and this technique has provided a considerably more suitable and durable tissue valve substitute. To increase further durability of valve tissue, Reis and his colleagues designed a flexible stent to reduce the stress on the heterogeneous tissue valve mounted. However with the advent of more innovative mechanical valve currently, many bioprosthetic valves are being substituted by mechanical valves at our department of cardiothoracic surgery because of bioprosthetic valve failure. Main cause of bioprosthetic valves failure were calcification or/and tear of tissue valves. The purpose of this retrospective study is to clarify the relationship between the patients clinical profile during implantation of tissue valves and pathologic features of the failed bioprosthetic valve. From March, 1982 through June, 1988, 53 bioprosthetic heart valves that had been ex-planted from 45 patients at the department of cardiac surgery of Yonsei University Hospital were subjected to this study. The patients were 10 to 65 year-old [mean age: 30.3 yr] with 17 males and 28 females. Re-replacements of prosthetic valves were carried out twenty nine in mitral position, eight in aortic position and eight in both aortic and mitral position simultaneously. The grading and location for calcification of valves were verified by radiograms. The calcification of the explanted valves leaflets was graded from 0 to 4 plus according to Cipriano and associates method. The types of tear and perforation of leaflet were classified into four types as Ishihara has adopted initially in 1981. In younger age group under thirty three years, explanted tissue valves were significantly more affected in terms of grades of severity of valve calcification as compared with older age group [p < 0.035]. Valve calcification appeared more severe in male as compared to female [p< 0.002]. Ionescu-Shiley bovine pericardial bioprosthetic valves showed more severe calcification than Hancock porcine tissue valves [p< 0.035]. Calcium deposit was found very prevalent at the area of commissural attachment [86 % of all]. Type I of valve rupture was shown to be related with simultaneous calcification. However, the relation of explanted valve position, duration of implanted prosthetic valve, atrial fibrillation and anticoagulant therapy to the severity of bioprosthetic valve calcification were not significantly clear statistically [p > 0.05].

  • PDF

Effects of PCB ENIG and OSP Surface Finishes on the Electromigration Reliability and Shear Strength of Sn-3.5Ag PB-Free Solder Bump (PCB의 ENIG와 OSP 표면처리에 따른 Sn-3.5Ag 무연솔더 접합부의 Electromigration 특성 및 전단강도 평가)

  • Kim, Sung-Hyuk;Lee, Byeong-Rok;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.166-173
    • /
    • 2014
  • The effects of printed circuit board electroless nickel immersion gold (ENIG) and organic solderability preservative (OSP) surface finishes on the electromigration reliability and shear strength of Sn-3.5Ag Pb-free solder bump were systematically investigated. In-situ annealing tests were performed in a scanning electron microscope chamber at 130, 150, and $170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). Electromigration lifetime and failure modes were investigated at $150^{\circ}C$ and $1.5{\times}10^5A/cm^2$, while ball shear tests and failure mode analysis were conducted under the high-speed conditions from 10 mm/s to 3000 mm/s. The activation energy of ENIG and OSP surface finishes during annealing were evaluated as 0.84 eV and 0.94 eV, respectively. The solder bumps with ENIG surface finish showed longer electromigration lifetime than OSP surface finish. Shear strengths between ENIG and OSP were similar, and the shear energies decreased with increasing shear speed. Failure analysis showed that electrical and mechanical reliabilities were very closely related to the interfacial IMC stabilities.

Eletrostatic Discharge Effects on AlGaN/GaN High Electron Mobility Transistor on Sapphire Substrate (사파이어 기판을 사용한 AlGaN/GaN 고 전자이동도 트랜지스터의 정전기 방전 효과)

  • Ha Min-Woo;Lee Seung-Chul;Han Min-Koo;Choi Young-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.109-113
    • /
    • 2005
  • It has been reported that the failure phenomenon and variation of electrical characteristic due to the effect of electrostatic discharge(ESD) in silicon devices. But we had fess reports about the phenomenon due to the ESD in the compound semiconductors. So there are a lot of difficulty to the phenomenon analysis and to select the protection method of main circuits or the devices. It has not been reported that the relation between the ESD stress and GaN devices, which is remarkable to apply the operation in high temperature and high voltage due to the superior material characteristic. We studied that the characteristic variation of the AlGaN/GaN HEMT current, the leakage current, the transconductance(gm) and the failure phenomenon of device due to the ESD stress. We have applied the ESD stress by transmission line pulse(TLP) method, which is widely used in ESD stress experiments, and observed the variation of the electrical characteristic before and after applying the ESD stress. The on-current trended to increase after applying the ESD stress. The leakage current and transconductance were changed slightly. The failure point of device was mainly located in middle and edge sides of the gate, was considered the increase of temperature due to a leakage current. The GaN devices have poor thermal characteristic due to usage of the sapphire substrate, so it have been shown to easily fail at low voltage compared to the conventional GaAs devices.

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.

An Experimental Study on the Analysis of Behavior Characteristics of the NDB Soil Nailing System (NDB 쏘일네일링 시스템의 거동특성 평가에 관한 실험적 고찰)

  • 김홍택;정성필;박시삼;전경식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.521-528
    • /
    • 2003
  • In this study, a newly modified soil nailing technology called as the NDB(New Down and Board) soil nailing system is introduced. To improve the trafficability, workability, and economical efficiency, SMC(Sheet Molding Compound) board is adopted instead of using the concrete block facing. The SMC board has a distinct advantage of showing a fine view by directly coating with any kind of environmental photos. Composite material properties of the SMC board and cement grout are distinguished features of the NDB soil nailing system. In the present study, both laboratory tests(bending and punching failure tests) and field pull-out tests are carried out to analyze the behavior characteristics of the NDB soil nailing system, including the stress and strain distribution.

  • PDF

Development of Multiple Neural Network for Fault Diagnosis of Complex System (복합시스템 고장진단을 위한 다중신경망 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.36-45
    • /
    • 2000
  • Automated production system is composed of many complicated techniques and it become a very difficult task to control, monitor and diagnose this compound system. Moreover, it is required to develop an effective diagnosing technique and reduce the diagnosing time while operating the system in parallel under many faults occurring concurrently. This study develops a Modular Artificial Neural Network(MANN) which can perform a diagnosing function of multiple faults with the following steps: 1) Modularizing a complicated system into subsystems. 2) Formulating a hierarchical structure by dividing the subsystem into many detailed elements. 3) Planting an artificial neural network into hierarchical module. The system developed is implemented on workstation platform with $X-Windows^{(r)}$ which provides multi-process, multi-tasking and IPC facilities for visualization of transaction, by applying the software written in $ANSI-C^{(r)}$ together with $MOTIF^{(r)}$ on the fault diagnosis of PI feedback controller reactor. It can be used as a simple stepping stone towards a perfect multiple diagnosing system covering with various industrial applications, and further provides an economical approach to prevent a disastrous failure of huge complicated systems.

  • PDF