• Title/Summary/Keyword: compound K

Search Result 8,267, Processing Time 0.04 seconds

Profile of Gene Expression Changes Treated with Compound K Induced Cell Cycle Arrest and Cell Death of Prostate Cancer PC-3 Cell Line (인간 전립선암 PC-3 세포에서 Compound K에 의한 세포주기 조절 및 세포사멸 유전자 발현 변화)

  • Kim, Kwang-Youn;Park, Kwang-Il;Ahn, Soon-Cheol
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.267-275
    • /
    • 2021
  • Objectives : Previously, we reported that compound K isolated from fermented ginseng by Aspillus oryzae has a wide biochemical and pharmacological effect, including anti-cancer activity in prostate cancer PC-3 cells. Despite these findings, its signaling pathway and gene expression pattern are not clearly understood. Methods : To confirm the gene expression study of treated with compound K in PC-3 cells, a cDNA microarray chip composed of 44K human cDNA probes was used. MTT assay, western blot analysis, propidium iodide staining, and annexin V/propidium iodide staining were analyzed. Results : We confirmed the differences of gene expression profiles. Then, we analyzed with the cell cycle arrest, cell death and cell proliferation related genes using DAVID database. Conclusions : Our finding should be useful for understanding genome-wide expression patterns of compound K-mediated cell cycle arrest toward induction of cell death and be helpful for finding future cancer therapeutic targets for prostate cancer cells.

Synthesis of Protoberberine Derivatives and Their Biological Activities (Protoberberine의 고급지방산 유도체합성 및 활성연구(V))

  • Kim, Sin-Kyu;Kwon, Chang-Ho;Yook, Chang-Soo;Rho, Young-Soo;Seo, Seong-Hoon;Choung, Se-Young;Chung, Sung-Hyun;Kim, Dong-Hyun;Hwang, Soon-Ho
    • YAKHAK HOEJI
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • Irradiation of phenolbetaine in a stream of nitrogen produced 8,14-cycioberbine[1]. Compound[1] was treated with 10% HCl solution to give the 8-hydroxycycloberbine[2] in 67.7% yield. Subsequently addition of ethylchloroformate to the compound[2] gave rise to the 8-hydroxy-7-ethylcarboxy-9, 10-dimethoxy-2, 3-methylenelioxy-13-oxo-norochotensane[3] in 78% yield. Treatment of the compound[3] with bis-(2-chloroethyl)amine then lead to the 7-bis(2-chloroethyl)carbamyl-norochoteneare[4]. On the other hand the compound[5], which is the 8-methoxynorochotensane, was derived when compound[1] was treated with methanol in a few drops of BF. Treatment of the compound[6], and the compound[7], 7-bis(2-chloroethyl)-carbanyl-8-methoxy-norocheyensane, was then synthesized by reaction of the compound[6] with bis(2-chloroethyl) amine. In the other synthetic pathway when compound[5] was treated with $POCl_3$ in dried benzene, 13-chloro-6-ene-norochetensane[8] with 42% yield was formed. Finally the 13-bis-(2-chloroethyl) amino-8-methoxy-norochotensane[9] was produced when we treated the compound[8] with bis-(2-chloroethyl) amine. In another pathway, reaction between phenolbetaine which is the precursor of the compound[1] and benzoylchloride in dried chloroform gave us the 5,6,7 trihydro-2, 3-methylene-dioxy-9-chloromethyl-10, 11-dimethoxyphenylisoquinoline-8-benzoate[10] in 73% yield. The results of biological activities for these compounds are also presented in Table I and II.

  • PDF

Study on Crack Resistance Improvement of Epoxy Insulation (Epoxy 절연물의 내크랙성 향상에 관한 연구)

  • Ha, Young-Kil;Kim, Su-Yon;Lee, Sang-Jin;Kim, Young-Seong;Park, Wan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1581-1583
    • /
    • 1999
  • Epoxy Compound has been used as insulation material in cable accessories. During the applying voltage to cable, heat shock is induced to accessory by the temperature difference between atmosphere and conductor. In this study, crack resistance, thermal and mechanical properties were evaluated about conventional epoxy compound and rubber toughened epoxy compound. Because rubber absorbs the stress caused by heat shock, crack resistance of rubber toughened epoxy compound is high. In the case of low thermal expansion coefficient, the compound shows high crack resistance because of low volumetric change.

  • PDF

A Novel Chemical Compound for Inhibition of SARS Coronavirus Helicase

  • Lee, Jin-Moo;Cho, Jin-Beom;Ahn, Hee-Chul;Jung, Woong;Jeong, Yong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2070-2073
    • /
    • 2017
  • We have discovered a novel chemical compound, (E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl) acrylamide, that suppresses the enzymatic activities of SARS coronavirus helicase. To determine the inhibitory effect, ATP hydrolysis and double-stranded DNA unwinding assays were performed in the presence of various concentrations of the compound. Through these assays, we obtained $IC_{50}$ values of $2.09{\pm}0.30{\mu}M$ (ATP hydrolysis) and $13.2{\pm}0.9{\mu}M$ (DNA unwinding), respectively. Moreover, we found that the compound did not have any significant cytotoxicity when $40{\mu}M$ of it was used. Our results showed that the compound might be useful to be developed as an inhibitor against SARS coronavirus.

Antibacterial Compound against Pasteurella haemolytica is produced from Streptomyces sp. 51086

  • Kang, Hee-Chol;In- Ja Ryoo;Yun, Bong-Sik;Yu, Seung-Hun;Yoo, Ick-Dong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.129-129
    • /
    • 1998
  • The Pasteurella haemolytica-induced pneumonic lesions are frequently occurred with stress and infection of virus in the cattle. In the course of screening for antimicrobial activity against Pasteurella haemolytica, compound 51086 has been isolated from the fermentation broth of the strain streptomyces sp. The compound 51086 was purified by column chromatography and HPLC, subsequently. The structure of compound 51086 was determined as a hygromycin A by a combination of $^1$H NMR, $\^$l3/C NMR, HMBC, and ESI -MS. This compound showed significant antibacterial activity against P. haemolytica and P. multocidn in Gram-negative bacteria.

  • PDF

Compound Explosives Detection and Component Analysis via Terahertz Time-Domain Spectroscopy

  • Choi, Jindoo;Ryu, Sung Yoon;Kwon, Won Sik;Kim, Kyung-Soo;Kim, Soohyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.454-460
    • /
    • 2013
  • We present qualitative and quantitative component analyses on compound explosives via Terahertz time-domain spectroscopy (THz-TDS) based on a combination of wavelet thresholding and wavelength selection. Despite its importance, the field of signal processing of THz signals of compound plastic explosives is relatively unexplored. In this paper, experiment results from explosives Composition B-3 and Pentolite are newly presented, suggesting a novel signal processing procedure for in situ compound explosives detection. The proposed signal processing method demonstrates effective component analysis even in noisy and humid environments, showing significant decrease in component concentration percentage error of approximately 22.7% for Composition B-3 and 48.8% for Pentolite.

Cytotoxic Effect of Aromatic and Aliphatic Compounds Produced by Streptomyces sp. Isolated in Korea (한국 Streptomyces SP.로부터 분리한 방향족 화합물과 지질 화합물의 세포독성 연구)

  • Shin, Suck-Woo;Ryeom, Kon
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.215-221
    • /
    • 1997
  • In an effort to screen new selective antitumor agents from the broth of soil microorganism, cytotoxicity oriented screening was performed against tumor cells and 3 compounds (Compound 1, 2 and 3) were isolated from Sreptomyces parvullus ISP 5048 and their chemical structures were determined. Among these compounds, Compound 2 showed the highest cytotoxicity against P388Dl and L1210. While the $IC_{50}$/ values of compound 2 against P388Dl and L1210 were 0.073$\mu$g/ml and 0.07$\mu$g/ml, respectively, and the $IC_{50}$/ value of Compound 3 was 0.17$\mu$g/ml against human lung cancer cells, A549, the cytotoxicity of Compound 2 and 3 against normal cell line, Vero E6 cell was about 4- and 8-fold lower than that of adriamycin. Based on the chemical analysis data, Compound 3 was octacosamicine A, a known antibiotic, which was reported by Dobasih et al. (1988). Taken together the results demonstrated that Compound 2 and Compound 3 has the possibility to be developed as antitumor agent because of its potent cytotoxicity as well as high selectivity against various cancer cell lines.

  • PDF

Synthesis of New 2-Thiouracil-5-Sulfonamide Derivatives with Biological Activity

  • Fathalla, O.A.;Zaghary, W.A.;Radwan, H.H.;Awad, S.M.;Mohamed, M.S.
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.258-269
    • /
    • 2002
  • 2-Thiouracil-5-sulfonylchloride 1 reacted with a series of aromatic and heterocyclic amines to give 2a-j. The same compound 1 was reacted with a series of sulphonamides giving different sulphonamides of type 3a-e. On the other hand compound 1 was allowed to react with p-aminoacetophenone givining compound 4 which in turn was allowed to react with derivatives of alkyl thiosemicarbazides to give thiosemicarbazones of type 5a-e, also compound 4 was monobrominated to give compound 6 which in turn was reacted thiosemicarbazones of some aldehydes to give the corresponding thiazole derivatives 7a-f. In the same time compound 4 was reacted with a series of aromatic and heterocyclic aldehydes givining chalcones 8a-g (Claisen-Schemidt reaction). Also compound 4 was allowed to react with a series of aromatic and heterocyclic aldehydes, ethyl cyano acetate and/or malononitrile, and ammonium acetate giving pyridine derivatives 9a-d and 10a-e respectively. The biological effects of some of the new synthesized compounds was also investigated.

A Study on the Soldering Characteristic of 4 Bus Bar Crystalline Silicon Solar Cell on Infrared Lamp and Hot Plate Temperature Control (적외선 램프 및 핫 플레이트 온도 제어를 통한 4 Bus Bar 결정질 실리콘 태양전지 솔더링 특성에 관한 연구)

  • Lee, Jung Jin;Son, Hyoung Jin;Kim, Seong Hyun
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The growth of intermetallic compounds is an important factor in the reliability of solar cells. Especially, the temperature change in the soldering process greatly affects the thickness of the intermetallic compound layer. In this study, we investigated the intermetallic compound growth by Sn-diffusion in solder joints of solar cells. The thickness of the intermetallic compound layer was analyzed by IR lamp power and hot plate temperature control, and the correlation between the intermetallic compound layer and the adhesive strength was confirmed by a $90^{\circ}$ peel test. In order to investigate the growth of the intermetallic compound layer during isothermal aging, the growth of the intermetallic compound layer was analyzed at $85^{\circ}C$ and 85% for 500 h. In addition, the activation energy of Sn was calculated. The diffusion coefficient of the intermetallic compound layer was simulated and compared with experimental results to predict the long-term reliability.

Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger

  • Jeong, Eun-Bi;Kim, Se-A;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1559-1566
    • /
    • 2020
  • Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.