• Title/Summary/Keyword: composition profile

Search Result 528, Processing Time 0.028 seconds

Effects of Miling System on Gouda Cheese Characteristics made from Farmstead Milk-processing Plant (착유방식이 목장형 유가공으로 제조된 고다치즈의 품질 특성에 미치는 영향)

  • Lee, Jin-Sung;Moon, Ju Yeon;Nam, Ki-Taeg;Park, Seong-Min;Park, Seung-Yong;Jung, Mun Yhung;Son, Yong-Suk
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.245-254
    • /
    • 2016
  • This investigation was carried out to study effects of different milking systems on the characteristics of Gouda cheese produced at farmstead milk-processing plants. In the first study, raw milk was collected from automatic milking system and conventional milking system farms, and Gouda cheeses were prepared under the same conditions. After 6 months of aging, the chemical composition was analyzed and free fatty acid (FFA) analysis and sensory evaluation were carried out on the products. In the second study, Gouda cheese samples were collected from seven farmstead milk-processing plants and the chemical composition and texture profile analysis were evaluated. No significant differences were found in the chemical composition of Gouda cheese according to different milking systems or different farms except crude ash. FFA analysis showed significant differences among farms, but sensory evaluation showed no significant differences. No significant differences were observed in FFA content and sensory assessment of different milking systems. Texture profile analysis revealed that there were significant differences in each cheese made at different farm plants, but there were no differences when different milking systems were used.

Correlation analysis of muscle amino acid deposition and gut microbiota profile of broilers reared at different ambient temperatures

  • Yang, Yuting;Gao, Huan;Li, Xing;Cao, Zhenhui;Li, Meiquan;Liu, Jianping;Qiao, Yingying;Ma, Li;Zhao, Zhiyong;Pan, Hongbin
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.93-101
    • /
    • 2021
  • Objective: Temperature could influence protein and amino acid deposition as well as gut microbiota profile and composition. However, the specific effects of ambient temperature on amino acids deposition and gut microbiota composition remain insufficiently understood. Methods: A total of 300 one-day-old Avian broilers were randomly divided into three groups and reared at high, medium, and low temperature (HT, MT, and LT), respectively. Breast muscle and fecal samples were collected for amino acid composition analysis and 16S rRNA gene sequence analysis. Results: Our data showed that compared to the MT group, there was a decrease of muscle leucine and tyrosine (p<0.05), as well as an increase of methionine in the HT group (p<0.05) and a decrease of serine in the LT group. Examination of microbiota shift revealed that at genus level, the relative abundance of Turicibacter and Parabacteroides was increased in the HT group (p<0.05) and that the relative abundances of Pandoraea, Achromobacter, Prevotella, Brevundimonas, and Stenotrophomonas in the LT group were higher than those in the MT group (p<0.05). In addition, there were substantial correlations between microbes and amino acids. In the HT group. Turicibacter was negatively correlated with aspartic acid and tyrosine, whereas Parabacteroides was positively correlated with methionine (p<0.05). In the LT group, there were multiple positive correlations between Achromobacter and arginine, isoleucine or tyrosine; between Prevotella and cysteine or phenylalanine; between Brevundimonas and cysteine; and between Stenotrophomonas and cysteine as well as a negative correlation between Stenotrophomonas and serine. Conclusion: Our findings demonstrated that amino acid content of breast muscle and intestinal microbiota profile was affected by different ambient temperatures. Under heat exposure, augmented abundance of Parabacteroides was correlated with elevated methionine. Low temperature treatment may affect muscle tyrosine content through the regulation of Achromobacter.

A Study on Synthesis and Characterization of TiZrB$_2$ Composite by SHS Microwave (SHS 마이크로파에 의한 TiZrB$_2$ 복합재료의 합성 및 특성연구)

  • 이형복;윤영진;오유근;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • TiZrB2 solid solution was synthesized using fine powders of Ti, Zr and B by SHS microwave process. The characterization of the synthesized powder and sintered bodies ws investigated. The combustion temperature and rate were increased with increasing the mole ratio of Zr in temperature profile, and showed the maximum combustion temperature and velocity values of 285$0^{\circ}C$ and 14.6mm/sec in Ti0.2Zr0.8B2 composition. Phase separation has been occured into a composite with TiB2 and ZrB2 phases from TiZrB2 solid solution, which was hot pressed sintering at 30 MPa for an hour at 190$0^{\circ}C$. At the composition of Ti0.8Zr0.2B2 the best properties has been obtained in relative density, bending strength, fracture toughness and hardness, with 99%, 680 MPa, 7.3MPa.m1/2 and 2750 Kg/$\textrm{mm}^2$ respectively.

  • PDF

Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage

  • Yuan, XianJun;Wen, AiYou;Desta, Seare T.;Wang, Jian;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.804-810
    • /
    • 2017
  • Objective: The objective of this study was to evaluate the effect of sodium diacetate (SDA) on fermentation profile, chemical composition and aerobic stability of alfalfa (Medicago sativa L.) silage. Methods: Fresh alfalfa was ensiled with various concentrations of SDA (0, 3, 5, 7, and 9 g/kg of fresh forage). After 60 days of the ensiling, the samples were collected to examine the fermentative quality, chemical composition and aerobic stability. Results: The application of SDA significantly (p<0.05) decreased silage pH with the lowest value in silage with 7 g/kg of SDA. The proliferations of enterobacteria, yeasts, molds and clostridia were inhibited by SDA, resulted in lower ethanol, propionic and butyric acid concentrations and dry matter loss in SDA treated silages than control. The increasing SDA linearly decreased free amino acid N (p<0.001), ammonia N (p = 0.018) and non-protein N (p<0.001), while linearly increased water soluble carbohydrate (p<0.001) and peptide N (p<0.001). It is speculated that SDA accelerated the shift from homofermentative to heterofermentative lactic acid bacteria during the silage fermentation, indicated by lower lactic acid production in SDA-9 than SDA-7 silages after 60 days of ensiling. Alfalfa silages treated with SDA at 7 g/kg had highest Flieg's point and remained stable more than 9 d during aerobic exposure under humid and hot conditions in southern China. Conclusion: SDA may be used as an additive for alfalfa silages at a level of 7 g/kg.

Fatty Acid Profile of Muscles from Crossbred Angus-Simmental, Wagyu-Simmental, and Chinese Simmental Cattles

  • Liu, Ting;Wu, Jian-Ping;Lei, Zhao-Min;Zhang, Ming;Gong, Xu-Yin;Cheng, Shu-Ru;Liang, Yu;Wang, Jian-Fu
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.563-577
    • /
    • 2020
  • This study assessed breed differences in fatty acid composition and meat quality of Longissimus thoracis et lumborum (LTL) and semitendinosus (SE) of Angus×Chinese Simmental (AS), Wagyu×Chinese Simmental (WS), and Chinese Simmental (CS). CS (n=9), AS (n=9) and WS (n=9) were randomly selected from a herd of 80 bulls which were fed and managed under similar conditions. Fatty acid profile and meat quality parameters were analyzed in duplicate. Significant breed difference was observed in fatty acid and meat quality profiles. AS exhibited significantly (p<0.05) lower C16:0 and higher C18:1n9c compared with CS. AS breed also had a tendency (p<0.10) to lower total saturated fatty acid (SFA), improve C18:3n3 and total unsaturated fatty acid (UFA) compared with CS. Crossbreed of AS and WS had significantly (p<0.05) improved the lightness, redness, and yellowness of muscles, and lowered cooking loss, pressing loss, and shear force compared with CS. These results indicated that fatty acid composition and meat quality generally differed among breeds, although the differences were not always similar in different tissues. Fatty acid composition, meat color, water holding capacity, and tenderness favored AS over CS. Thus, Angus cattle might be used to improve fatty acid and meat quality profiles of CS, and AS might contain better nutritive value, organoleptic properties, and flavor, and could be potentially developed as an ideal commercial crossbreed.

Carcass Characteristics, Chemical Composition and Fatty Acid Profile of the Longissimus Muscle of Bulls (Bos taurus indicus vs. Bos taurus taurus) Finished in Pasture Systems

  • do Prado, Ivanor Nunes;Aricetti, Juliana Aparecida;Rotta, Polyana Pizzi;do Prado, Rodolpho Martin;Perotto, Daniel;Visentainer, Jesui Vergilio;Matsushita, Makoto
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1449-1457
    • /
    • 2008
  • This experiment was carried out to evaluate the carcass characteristics, chemical composition and fatty acid profile of the Longissimus muscle (LM) of three cattle genetic groups (Purunã, PUR, 11; 1/2 Purunã vs. 1/2 British, PUB, 6 and 1/2 Charolais vs. 1/2 Caracu, CHC, 10) finished in pasture systems. The field work took place at the Lapa Research Farm of the Agronomic Institute of Paraná, in the city of Lapa, south Brazil. The animals were fed during the winter with corn silage, cottonseed meal, cracked corn, urea, limestone and mineral salts as sources of protein, as well as an energy supplement, in pasture systems of Brachiaria decumbens Stapf. The animal groups were slaughtered at 20 months of age, at 50122.6 kg live weight. CHC bulls had higher (p<0.05) final weight than PUR and PUB bulls. Hot carcass weight was similar (p>0.10) between PUR and PUB. Hot carcass dressing percentage was higher (p<0.05) for PUB bulls than for PUR and CHC bulls. On the other hand, hot carcass dressing percentage was similar (p>0.05) between PUR and CHC bulls. Fat thickness was similar (p>0.10) among all genetic groups. However, the Longissimus area of CHC bulls was greater (p<0.05) than in PUR and PUB genetic groups. The genetic groups did not affect (p>0.10) the marbling of Longissimus. There was no observed difference (p>0.10) in moisture, ash, crude protein and total cholesterol contents among the three genetic groups. On the other hand, the total lipid percentage was higher (p<0.05) for the PUB genetic group in comparison with PUR and CHC. CLA percentage was highest for PUR animals. However, total CLA amounts were not altered by the different genetic groups.

Nutritional composition and antioxidant activity of pink oyster mushrooms (Pleurotus djamor var. roseus) grown on a paddy straw substrate

  • Raman, Jegadeesh;Lakshmanan, Hariprasath;Jang, Kab-Yeul;Oh, Minji;Oh, Youn-Lee;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.18 no.3
    • /
    • pp.189-200
    • /
    • 2020
  • Pleurotus djamor var. roseus is an edible mushroom isolated from the wild and cultivated on paddy straw substrates. The present study was carried out to compare the nutritional composition and antioxidant properties of P. djamor var. roseus at different growth stages (primordia, basidiomata, and mycelia). The protein content was is in the range of 31.48 to 35.50 g/100g dw. The crude fiber content ranged from 8.0 to 14.60 g, and that of total carbohydrates ranged from 44.75 to 48.90 g. Sodium, magnesium, and calcium reached the maximum levels in basidiomata, and selenium was detected in basidiomata and mycelia (0.47 - 0.22 mg/Kg). The amino acid profile showed that all essential and nonessential amino acids and glycine showed maximum levels in basidiomata and 15.98 ± 0.01 g/100g. The fatty acid profile showed the presence of saturated and unsaturated fatty acids; the unsaturated fatty acid content was maximum in all of the samples, ranging from 76 - 40.41%. The total phenol and flavonoid contents as well as the scavenging (DPPH), ferric thiocyanate (FTC), and thiobarbituric acid (TBA) activities in the context of methanol and water extracts from primordia, basidiomata, and mycelium were determined. Among them, basidiomata and mycelial methanol extracts exhibited significant antioxidant activity. Overall, these findings show that P. djamor var. roseus can be used as a functional food for daily consumption.

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.

Effect of Different Dietary Composition of Linoleic Acid, Eicosapentaenoic Acid and Docosahexaenoic Acid on the Growth and Fatty Acid Profile of Olive Flounder Paralichthys olivaceus (Linoleic acid, EPA 및 DHA 조성이 다른 배합사료 공급에 따른 넙치 (Paralichthys olivaceus)의 성장 및 어체 지방산 조성)

  • Kim, Esther;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.49-58
    • /
    • 2019
  • This study was conducted to investigate the effects of different dietary lipid sources on the growth, feed utilization, body composition and tissue fatty acid profile of olive flounder Paralichthys olivaceus. Five isonitrogenous and isocaloric diets were formulated by adding various lipid sources including soybean oil (SO), eicosapentaenoic acid triglyceride (EPATG) and ethyl ester (EPAEE) forms, docosahexaenoic acid triglycerides (DHATG) and a 1:1 blend of soybean oil and DHATG. Triplicate groups of fish ($6.8{\pm}0.01g$) were fed one of the experimental diets to apparent satiation twice daily for 8 weeks. Fish fed the DHATG diet had the highest growth, protein efficiency ratio and feed efficiency values which were significantly higher than those fed the SO and EPAEE diets. Whole body proximate composition and somatic parameters were not influenced by the dietary treatments. Muscle of fish fed with SO diets were rich in 18:1n-9, 18:2n-6 and 18:3n-3, whereas those of fish fed with EPATG, EPAEE and DHATG diets were rich in n-3 highly unsaturated fatty acids (HUFA). These findings indicated that the inclusion of n-3HUFA oils in olive flounder feed could be beneficial for the fish while simultaneously increasing the concentration of beneficial n-3HUFA in fish fillets destined for the human consumer.

Total replacement of dietary fish oil with alternative lipid sources in a practical diet for mandarin fish, Siniperca scherzeri, juveniles

  • Sankian, Zohreh;Khosravi, Sanaz;Kim, Yi-Oh;Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.4
    • /
    • pp.8.1-8.9
    • /
    • 2019
  • A 12-week feeding trial was designed to evaluate the effect of total replacement of fish oil (FO) with terrestrial alternative oils on growth, feed utilization, body composition, hematological parameters, and fillet fatty acid profile of mandarin fish juveniles. Four iso-nitrogenous (56% crude protein) and iso-lipidic (13% crude lipid) practical diets were formulated. A control diet contained 6% FO and three other experimental diets were prepared by replacing FO with linseed oil, soybean oil, and lard (designed as FO, LO, SO, and lard, respectively). Each diet was randomly allocated to triplicate groups of 25 fish ($1.8{\pm}0.03g/fish$) in a circular tank. Complete replacement of FO by three tested alternative oils had no remarkable impact on growth performance, feed utilization efficiency, and morphological and hematological parameters of juvenile mandarin fish. However, daily feed intake was found to be significantly higher for fish fed the SO diet compared with those fed the FO and LO diets. Fish fed LO and SO diets exhibited significantly higher levels of the whole body lipid compared to fish fed diet containing FO. Fillet fatty acid composition reflected dietary fatty acid profile. The highest level of ${\alpha}$-linolenic acid, linoleic acid, and oleic acid was observed in fish fillet fed LO, SO, and lard, respectively. Although the eicosapentaenoic acid level of fish fillet fed diet FO was higher than other treatments, no significant difference was found in docosahexaenoic acid content among all dietary groups. The results of the present study clearly demonstrate that the complete replacement of FO in mandarin fish diets is achievable. These findings are useful in dietary formulation to reduce feed costs without compromising mandarin fish growth.