• Title/Summary/Keyword: composite yarn

Search Result 71, Processing Time 0.021 seconds

Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM (VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성)

  • Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.

Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites (3차원 직조형 열가소성수지 복합재료 제조 및 특성화)

  • 홍순곤;변준형;이상관
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.

Mechanical Properties Prediction by Geometric Modeling of Plain Weave Composites (평직 복합재료의 기하학적 모델링을 통한 기계적 물성 예측)

  • Kim, Myung-jun;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.941-948
    • /
    • 2016
  • Textile composite materials have been widely applied in aerospace structures due to their various advantages such as high specific stiffnesses and strengths, better out-of-plane performances, impact and delamination resistances, and net shape fabrications. In this paper, a modified geometric model of repeating unit cell (RUC) is suggested based on the Naik's model for 2D plain weave textile composites. The RUC geometry is defined by various parameters. The proposed model considers another parameter which is a gap length between adjacent yarns. The effective stiffnesses are predicted by using the yarn slicing technique and stress averaging technique based on iso-strain assumption. And the stiffnesses of RUC are evaluated by adjusting the gap ratio and verified by comparing with Naik's model and experimental data for 2D plain weave composite specimens.

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.

Wearable Textile Strain Sensors (웨어러블 텍스타일 스트레인 센서 리뷰)

  • Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.733-745
    • /
    • 2016
  • This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain sensing according to sensor structures were understood; furthermore, the factors that affect the sensing performance were critically reviewed and application studies were examined. Textile strain sensors should be able to show piezoresistive effects with consistent resistance-extension in response to the extensional deformations that are repeated when they are worn. Textile strain sensors with piezoresistivity are typically made using conductive yarn knit structures or carbon-based fillers or conducting polymer filler composite materials. For the accuracy and reliability of textile strain sensors, fabrication technologies that would minimize deformation hysteresis should be developed and processes to complement and analyze sensing results based on accurate understanding of the sensors' resistance-strain behavior are necessary. Since light-weighted, flexible, and highly elastic textile strain sensors can be worn by users without any inconvenience so that to enable the users to continuously collect data related to body movements, textile strain sensors are expected to become the core of human interface technologies with a wide range of applications in diverse areas.

The Development of Bag-fabrics with Using ATY Composite Yarn (이소재 복합 ATY사를 이용한 PET Base 가방지용 직물 개발)

  • Hong, Sang-Gi;Park, Seong-Woo;Seo, Mal-Yong;Kang, Yun-Hwa;Kang, Su-Jin;Oh, Ik-Hwan
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.95-95
    • /
    • 2011
  • 가방지 중에서 고급 브랜드의 핸드백은 근래의 세계적인 경기불황에서도 꾸준한 소비층을 형성하면서 매출 상승을 유도하고 있는데, 기존 40~50대 시니어들을 위한 전통적인 레자 또는 자카드 문양직물의 고유한 디자인 뿐만 아니라 20~30대의 젊은 층을 위한 다양한 칼라의 프린팅 문양 직물도 많이 개발되고 있는 실정이다. 본 연구는 잠재권축사와 고강력PET를 이용하여 이소재 복합 ATY를 제조하고 제직 및 날염을 통해 다양한 프린팅 문양을 발현할 수 있는 가방지용 직물 개발에 관한 것이다. 최근의 캐주얼 및 힙합룩은 물론, 베이직 정장 차림까지 트렌디한 우븐 백이 코디 아이템 1호로 떠오르고 있는데, 가방용 브랜드 중"레스포색"과 "키플링" 등이 급상승 기류를 타며 국내에 빠르게 정착하고 있으며 수입 브랜드인 경전상사의 "롱샴"도 폴딩백으로 인기를 누리고 있다. 핫 이슈인 스포티즘을 떠올리지 않더라도 최근의 변화는 소비자의 니즈를 적극 수용하려는 패션잡화 업체들의 움직임을 대변하고 있으며, 직물형태의 백이 합리적인 가격에서나 가볍고 편리한 실용적인 부분 모두 소비자의 니즈를 채워주기에 충분하고, 트렌드가 부각된 가방일수록 시즌에 따라 스피디하게 구매가 이뤄지고 있다는 장점이 있어서, 최신 트렌드의 디자인과 재료 효과를 극대화한 제품이 다수 선보이고 있다. 본 연구에서는 이러한 다양한 트렌드 디자인의 문양 발현을 위한 직물을 위해 PET Base의 잠재권축사와 PET 고강력사를 사용하였는데, 이때 사용되는 잠재권사는 Effect사로써 온도, Air압 등의 공정요소 제어를 통해 Soft한 touch을 위한 잔루프를 발현하도록 하였으며, PET 고강력사는 Core사로 사용함으로써 잠재권축사의 강도를 보강하여 가방지로써 요구되는 강력을 가질 수 있도록 하였다.

  • PDF

Characteristics of High Strength Polyethylene Tape Yarns and Their Composites by Solid State Processing Methods (고상공정법에 의한 고강도 폴리에틸렌 테이프사와 그 복합재료의 특성)

  • Lee, Seung-Goo;Cho, Whan;Joo, Yong-Rak;Song, Jae-Kyung;Joo, Chang-Whan
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • The manufacture of high strength polyethylene(HSPE) tape yarns has been accomplished by a solid state processing(SSP) method as the compaction of ultra-high molecular weight polyethylene(UHMWPE) powders and drawing of the compacted film under the melting point without any organic solvents. In this study, the characteristics of HSPE tape yarns produced by SSP which is desirable for production cost and environmental aspect were analyzed. As the results, tensile strengths of HSPE tape yarns increased with increasing the draw ratio and the fracture morphology of highly drawn HSPE tape yarns showed more fibrillar shape than the low drawn one. Interfacial shear strengths of HSPE tape yarns with vinylester resin increased by $O_2$ plasma treatment and maximum interfacial shear strength was obtained in the plasma treatment condition of 100W and 5min. In addition, mechanical properties of HSPE tape yarn reinforced composites were investigated and compared with those of the gel spun HSPE fiber reinforced composites.

  • PDF

Assessment of Wicking and Fast Dry Properties According to Moisture Transport Measurement Method of Knit and Woven Fabrics for Garment (의류소재용 직·편물의 수분이동 특성 측정 방법에 따른 흡한속건성 평가)

  • Kim, Hyun-ah;Kim, Seung-jin
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 2017
  • In this study, moisture transport characteristics for the woven and knitted fabrics made of 8 kinds of fiber materials using MMT (moisture management tester) were measured and discussed with the Bireck bt MMT and water evaporating rate (WER) measuring methods, which are vertical moisture transport methods. In addition, the drying property by MMT of the eight kinds of specimens was compared and discussed with the results measured by the vertical drying measurement. MMT experimental result which is horizental moisture transport appeared to be similar to the result of the Bireck method, which is the vertical moisture transport experiment. Absortion time measured from drip method of the fabrics made of the bamboo, linen, and cotton/nylon composite fabrics was short and thus they showed best wicking property, which was attributed to the low contact angle on the fabric surface and high porosity of the fabrics due to the staple yarn structure composed of the hydrophilic staple fibers. In drying property of the fabric specimens by MMT, maximum absorption radius of the dry-zone knit and bamboo woven fabrics were the highest and they showed the best drying property, which was a little different result compared with vertical drying measurement method. Half time of the drying rate in the MMT method was highly correlated with the fabric thickness and saturated moisture absortion rate and their regression coefficients were 0.9 and 0.88, respectively. This means that the knitted and woven fabric design technology for retaining good wicking and drying properties of the fabrics with thin fabric thickness is very important for obtaining high functional wear comfort fabrics. In addition, wicking and drying properties of the fabrics made of different fiber materials and with different yarns and fabric structures showed different results according to the measuring methods.

Dyeabilities of Elastic Composite Yarn Woven Fabrics (탄성복합사를 이용한 직물의 염색성에 대한 연구)

  • Kim, Ji-Yeon;Kim, Sang-Wook;Min, Mun-Hong;Lee, Sang-Bong;Park, Yeon-Bong;Kang, Shin-Hyeok;Yeum, Jeong-Hyun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.108-108
    • /
    • 2012
  • 이전의 연구에서 기존의 ATY 장치에 ITY 노즐을 접목하여 개조한 사가공기로 제조한 탄성복합사를 자동차 시트용 트리코트 원단으로 편직하여 일광견뢰도가 우수한 염료를 선정하고 $125^{\circ}C$에서 염색하여야 견뢰도와 spandex의 물성을 저해하지 않음을 알 수 있었다. 폴리에스테르 탄성복합사의 염색성 평가에 이어 본 연구에서는 나일론 필라멘트 (70/24, Full-dull, 2ply사와 40D spandex 1ply사 복합)와 레이온사(75D, 1ply)를 투입하여 직물 원단(중량 216g/yd, 밀도 경사 78, 위사 52본/inch)을 제직한 후 2욕에서의 염색공정을 거칠 경우, 탄성복합사의 견뢰도와 물성에 미치는 영향을 조사하였다. 나일론, 레이온, 폴리우레탄의 3종 원단을 염색성 평가를 위하여 반응성염료로 먼저 레이온 부분을 염색한 후 산성염료로 나일론 부분을 염색하였으며, 이 때 spandex가 미치는 영향을 비교하기 위하여 spandex가 함유되지 않은 나일론, 레이온 복합 제직원단도 함께 염색한 후 견뢰도를 평가하였다. 또한, 레이온 부분은 CPB염색법과 제트염색기로 나누어 염색하여 염색기에 따른 인장강도와 인열강도를 평가하였다. 레이온 염색에는 셀룰로오스용 2관능기 반응성염료 3원색을 이용하여 khaki color로 combination염색하였으며, 나일론 부분에는 입자크기가 커서 견뢰도가 우수한 산성염료를 선정하여 combination염색한 후 냉수세하였다. 견뢰도를 비교한 결과, spandex가 포함된 탄성복합사 원단과 나일론과 레이온 만으로 제직된 원단 모두 세탁, 마찰, 물, 땀, 일광 견뢰도 모두가 4~5급으로 우수하여 spandex에 이염된 염료가 견뢰도에 미치는 영향은 없음을 확인하였다. 또한, 레이온 부분의 반응성염료 염색 시 CPB와 제트염색법의 두 가지 종류에 대한 인장강도와 인열강도 평가결과는 CPB 염색물이 제트염색물보다 약간 높게 나타났지만 3% 이내의 차이로 거의 차이가 없음을 나타내었다. 일반적으로 제트염색 시 원단은 로프상으로 이동하고, CPB염법은 확포상태 그대로 염색되기 때문에 제트염색 시 강도가 낮아지는 것으로 알려져 있으나, 본 연구에서는 탄성복합사를 경사, 위사 모두 사용함으로써 spandex가 신장하는 특성 때문에 강도의 저하가 없는 것으로 사료된다.

  • PDF

Combination Dyeing of Triacetate/PET Blended Fabric with Disperse Dye (트리아세테이트/PET 혼방 직물의 분산염료 혼합염색)

  • Kim, Myoung Ok;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2016
  • The aim of this study is to find the optimal combination dyeing condition for the enhancement of dye uptake and union dyeing of the composite material fabric made of triacetate and quick drying PET blended yarn. For the experiment, fabrics were one-bath combination dyed using the mixed dye of E-type disperse dye(C.I Disperse red 50) and S-type disperse dye(C.I. Disperse red 92) to measure dyed fabric's dye exhaustion, dye uptake, color and color difference according to the diverse conditions including dying temperature, time and mixed ratio of the dye. Dye equilibrium of combination dyeing occurred in $100^{\circ}C$, but by comparing dyed fabrics' K/S value and surface color, it was found that $120^{\circ}C$ was where the manifestation of color of triacetate and quick drying PET was identical. Mixed dye exhaustion and dye uptake merely changed as dyeing time increased, but color became more uniform. Therefore, it can be concluded that by using combination dyeing method, and by using the mixed dye which the mixing ratio of S-type dye and E-type dye is appropriately controlled, dye uptake can be improved compared to using single dyeing regardless of the color of E-type dye.