DOI QR코드

DOI QR Code

Mechanical Properties Prediction by Geometric Modeling of Plain Weave Composites

평직 복합재료의 기하학적 모델링을 통한 기계적 물성 예측

  • Kim, Myung-jun (Graduate School, Korea Aerospace Univ.) ;
  • Park, Jung-Sun (Aerospace and Mechanical Engineering Department, Korea Aerospace Univ.)
  • Received : 2016.08.09
  • Accepted : 2016.10.13
  • Published : 2016.11.01

Abstract

Textile composite materials have been widely applied in aerospace structures due to their various advantages such as high specific stiffnesses and strengths, better out-of-plane performances, impact and delamination resistances, and net shape fabrications. In this paper, a modified geometric model of repeating unit cell (RUC) is suggested based on the Naik's model for 2D plain weave textile composites. The RUC geometry is defined by various parameters. The proposed model considers another parameter which is a gap length between adjacent yarns. The effective stiffnesses are predicted by using the yarn slicing technique and stress averaging technique based on iso-strain assumption. And the stiffnesses of RUC are evaluated by adjusting the gap ratio and verified by comparing with Naik's model and experimental data for 2D plain weave composite specimens.

직물 복합재료는 높은 비강성과 비강도를 가지며 일방향 복합재료에 비해 면외 방향 특성과 충격 및 층간분리에 대한 특성이 우수하여 항공우주 구조물의 주재료로 적용되고 있다. 본 논문에서는 2차원 평직 복합재료의 반복단위격자에 대한 기하학적 모델을 정의하고 유효강성을 예측하였다. 반복단위격자의 기하학적 형상은 다양한 프리폼 제작변수에 의해 결정될 수 있으며, Naik의 모델을 바탕으로 섬유다발간의 간극을 추가적으로 고려하는 수정된 기하학적 모델을 제시하였다. 평직 복합재료의 유효 강성은 반복단위격자에 대한 섬유다발 이산화 기법과 등변형률 가정 기반의 응력 평균화 기법을 사용하여 예측되었다. 또한 섬유다발간의 간극의 크기에 따른 강성의 변화를 평가하였으며, 기존 모델과 시편 시험 데이터와의 비교를 통해 강성 예측 결과를 검증하였다.

Keywords

References

  1. Niu, M. C., Composite Airframe Structures, Conmilit Press Ltd., Hong Kong, 1992.
  2. Niranjan K. Naik, Woven fabric composites, Technomic Publishing Co., Inc., 1994.
  3. Brian N. Cox, Handbook of Analytical Methods for Textile Composites, NASA Contractor Report 4750, Contract NAS1-19243, 1997.
  4. Chou, T-W., Ishikawa, T., "Analysis and Modeling of Two-Dimensional Fabric Composites," Composite Materials Series 3, Textile Structural Composites, 1989, pp. 210-264, Elsevier Science Publishers B. V.
  5. Ko, F. K., Pastore, C. M., Lei, C. and Whyte, D. W., "A Fabric Geometry Model for 3-D Braid Reinforced FP/AI-Li Composites," International SAMPE Metals Conference: Competitive Advances in Metals/Metal Processing, Cherry Hill, NJ, August 1987.
  6. Pastore, C. M. and Gowayed, Y. A.: "A Self-Consistent Fabric Geometry Model: Modification and Application of a Fabric Geometry Model to Predict the Elastic Properties of Textile Composites," Journal of Composites Technology and Research, JCTRER, Vol. 16, No. 1, Jan. 1994, pp. 32-36. https://doi.org/10.1520/CTR10392J
  7. Yang, J-M., Ma, C-L. and Chou, T-W., "Fiber Inclination Model of Three-Dimensional Textile Structural Composites," Journal of Composite Materials, Vol. 20, September 1986, pp. 472-484. https://doi.org/10.1177/002199838602000505
  8. Naik, N. K. and Ganesh, V. K., "Prediction of On-Axes Elastic Properties of Plain Weave Fabric Composites," Composites Science and Technology, Vol. 45, 1992, pp. 135-152. https://doi.org/10.1016/0266-3538(92)90036-3
  9. Raju, I. S. and Wang, J. T., Classical Laminate Theory Models for Woven Fabric Composites, NASA Technical Memorandum 109087, February 1994, National Aeronautics and Space Administration, Hampton, Virginia.
  10. Woo, K. S., Suh, Y. W., "Prediction of Effective Properties of Laminated Plain Weave Textile Composites," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 30, No. 10, 2003, pp. 10-20.
  11. Foye, R. L., Finite Element Analysis of the Stiffness of Fabric Reinforced Composites, NASA Contractor Report 189597, Feb. 1992, National Aeronautics and Space Administration, Hampton, Virginia.
  12. Naik, R. A., Ifju, P. G. and Masters, J. E., "Effect of Fiber Architecture Parameters on Deformation Fields and Elastic Moduli of 2-D Braided Composites," Journal of Composite Materials, 1994, Vol.28, pp.656-681. https://doi.org/10.1177/002199839402800705
  13. Rajiv A. Naik, Analysis of Woven and Braided Fabric Reinforced Composites, NASA Contractor Report 194930, Contract NAS1-19399, 1994.
  14. Home Made Composite, http://www.composites.ugent.be/homemadecomposites/whatarecomposites.html