• Title/Summary/Keyword: composite truss

Search Result 142, Processing Time 0.031 seconds

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

A Study on the Construction Status and the Structural System Features of Wooden Large Space Buildings (대공간 목구조 건축의 건립 현황과 구조시스템 특성 분석)

  • Lee, Juna;Lee, Hyunghoon;Lee, Seong-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • In this research, the case of modern wooden structures since 1950 with span of 30m or more was investigated and analyzed the construction status and structural planning characteristics of wooden large space architecture. As a result, wooden large space buildings have built around Asia, North America, and Europe, in which cases of ice skating stadiums with span of 30m to 60m were concentrated. In the case of baseball parks and football stadiums, even a span of about 165m was built in a wooden structure. In addition, it was found that the structural systems used in wooden large space structures were a funicular arch and truss structure, in that cases, funicular arch system consisting of radial arrangements was used in the examples exceeded 150m and the two way truss system was also used in long span wooden structures exceeding 100m. As the truss structure with a tie-rod or the flexure+tension structure was partially investigated, it can be seen that various timber structural systems need to be devised and researched. Also, It was investigated that a technique in which some members of the truss are made of steel or a composite member of steel and timber is also possible to develop

Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 세장한 이중강판합성벽의 비선형해석)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.505-517
    • /
    • 2008
  • A numerical analysis method was studied to predict the nonlinear behavior of slender double skin composite walls. For convenience in numerical analysis, the model for the double skin composite wall was developed as a macroscopic model that can predict nonlinear behavior with relatively simplified models. For the wall showing flexure-dominant behavior, a multiple layer model was used. Each layer was modeled with composite elements of concrete and steel plate. An X-type truss model was used for coupling beams showing shear-dominant behavior. To describe the cyclic behavior of concrete and steel elements, simplified cyclic models for the materials were proposed. The proposed analysis model was applied to isolated walls and coupled walls with rectangular or T-shaped cross-sections. The analytical results were compared with existing test results.

An Experimental Study of the Composite Slab under a Repeated Loading (단조 반복하중이 작용하는 합성슬래브의 거동에 대한 실험적 연구)

  • Eom, Chul Hwan;Kim, Hee Cheul;Park, Jin Young;Seo, Sang Hoon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.143-148
    • /
    • 2007
  • The application of metal deck floor system is increasing gradually and especially for office buildings. In the cases of large parking structures and storage structures, the construction period and the cost can be reduced. Also the steel deck system can prevent the crack of a floor and reduce the retrofit expenses. However, the floor should stand for the repeated truck load which is relatively heavier repeated loading. The mechanical behavior of a slab under repeated load is also different from the static loading state. An evaluation of a structural capacity was performed in this study through the dynamic capacity evaluation experiment for an application of a composite deck floor system as a parking structure slab. The period of repeated loadings were set up as 25years and 960,000 times monotone cyclic loads were applied at the center of the specimens. The tension crack propagation and patterns at the center of specimens were examined.

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

An efficient method for reliable optimum design of trusses

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1069-1084
    • /
    • 2016
  • This paper introduces a new and effective design amplification factor-based approach for reliable optimum design of trusses. This paper may be categorized as in the family of decoupled methods that aiming for a reliable optimum design based on a Design Amplification Factor (DAF). To reduce the computational expenses of reliability analysis, an improved version of Response Surface Method (RSM) was used. Having applied this approach to two planar and one spatial truss problems, it exhibited a satisfactory performance.

Shear resistance of steel-concrete-steel deep beams with bidirectional webs

  • Guo, Yu-Tao;Nie, Xin;Fan, Jian-Sheng;Tao, Mu-Xuan
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.299-313
    • /
    • 2022
  • Steel-concrete-steel composite structures with bidirectional webs (SCSBWs) are used in large-scale projects and exhibit good mechanical performances and constructional efficiency. The shear behaviors of SCSBW deep beam members in key joints or in locations subjected to concentrated forces are of concern in design. To address this issue, experimental program is investigated to examine the deep-beam shear behaviors of SCSBWs, in which the cracking process and force transfer mechanism are revealed. Compared with the previously proposed truss model, it is found that a strut-and-tie model is more suitable for describing the shear mechanism of SCSBW deep beams with a short span and sparse transverse webs. According to the experimental analyses, a new model is proposed to predict the shear capacities of SCSBW deep beams. This model uses strut-and-tie concept and introduces web shear and dowel action to consider the coupled multi mechanisms. A stress decomposition method is used to distinguish the contributions of different shear-transferring paths. Based on case studies, a simplified model is further developed, and the explicit solution is derived for design efficiency. The proposed models are verified using experimental data, which are proven to have good accuracy and efficiency and to be suitable for practical application.

Structural Damage Detection Based on Composite Data of Static and Modal Test (정적변위와 진동모우드 특성치의 합성자료를 이용한 구조물의 손상도 추정)

  • 정범석;한종석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.147-155
    • /
    • 1996
  • The purpose of present study is to propose a improved damage detection and assessment algorithm that has its basis on the method of system identification. In this approach, the complete sets of modes or displacements are not needed since the error response function involves only the difference between components of those vectors. The present approach also allows the use of composite data which is constitute of static displacements and eigenmodes. The effectiveness of the proposed statistical system identification method is investigated through simulated studies. A series of tests for predetermined damaged cantilever beam and bowstring truss structure have been conducted to verify the proposed method.

  • PDF

Evaluation of Strengthening Capacity of Deteriorated RC Beams using Finite Element Method (유한요소법에 의한 열화된 철근콘크리트 보의 보강성능평가)

  • 이창훈;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.756-761
    • /
    • 1999
  • The objective of this study is to develop finite element analysis technique to predict the strength reduction of deteriorated reinforced concrete beams and their strengthening capacity. In order to consider the effect of rebar corrosion, a tension stiffening model is proposed and area reduction of rebars due to corrosion is considered. For the analysis of strengthened deteriorated RC beams, one dimensional truss element and an interface element are introduced for models of the strengthening composite and the interface between concrete and composite to simulate delamination or discontinuous behavior at the interface. Then, analyses for deteriorated RC beams strengthened with glass fiber reinforced epoxy panel (GFREP) are carried out to predict both flexural failure and plate-end delamination failure. Finally, analysis results are verified with experimental results.

  • PDF

Underground Parking Lot by ANI Girder(ANgle Integrated Girder) and HCS (ANI Girder(앵글 및 래티스 철근으로 구성된 강조립보)와 HCS(Hollow Core Slab)를 활용한 지하주차장)

  • Choi, Ik-Jun;Jeon, Byong-Kap;Yom, Kyong-Soo;Choi, Sung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.101-102
    • /
    • 2016
  • Through the story height reducing method, cost saving can be implemented in many aspects. Recently, as one of PC floor system, HCS(Hollow Core Slab) has been applied in many project, and it is proved that it is excellent in productivity, economic efficiency, and workability as well. We developed a new composite beam(ANI Girder) which can be associated with HCS and reinforced with a truss-shape rebar and angle. As a result of actual application on underground parking building with HCS, it is confirmed that this system is effective in workability and story height reducing.

  • PDF