• 제목/요약/키워드: composite sections

검색결과 505건 처리시간 0.028초

Experimental investigation of inelastic buckling of built-up steel columns

  • Hawileh, Rami A.;Abed, Farid;Abu-Obeidah, Adi S.;Abdalla, Jamal A.
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.295-308
    • /
    • 2012
  • This paper experimentally investigated the buckling capacity of built-up steel columns mainly, Cruciform Columns (CC) and Side-to-Side (SS) columns fabricated from two Universal Beam (UB) sections. A series of nine experimental tests comprised of three UB sections, three CC sections and three SS sections with different lengths were tested to failure to measure the ultimate axial capacity of each column section. The lengths used for each category of columns were 1.8, 2.0, and 2.2 m with slenderness ratios ranging from 39-105. The measured buckling loads of the tested specimens were compared with the predicted ultimate axial capacity using Eurocode 3, AISC LRFD, and BS 5959-1. It was observed that the failure modes of the specimens included flexural buckling, local buckling and flexural-torsional buckling. The results showed that the ultimate axial capacity of the tested cruciform and side-by-side columns were higher than the code predicted design values by up to 20%, with AISC LRFD design values being the least conservative and the Eurocode 3 design values being the most conservative. This study has concluded that cruciform column and side-to-side welded flange columns using universal beam sections are efficient built-up sections that have larger ultimate axial load capacity, larger stiffness with saving in the weight of steel used compared to its equivalent universal beam counterpart.

전단슬립 효과를 고려한 합성보의 유효강성 (Effective Stiffness of Composite Beams Considering Shear Slip Effects)

  • 허병욱;배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.671-682
    • /
    • 2004
  • 본 연구는 부분 전단연결을 가지는 강-콘크리트 합성보의 처짐에 미치는 전단슬립의 영향을 조사하는 것이다. 현재 각국의 설계규준에서는 합성보의 처짐 계산시 전단연결재의 강도와 관련되어 있지만, 본 연구에서는 하중조건에 상관없는 전단연결재의 강성에 기반을 둔 정확한 해를 유도하였다. 우선, 평형조건, 곡률의 적합조건에 기반을 둔 3가지 하중조건에서의 합성보의 등가강성을 유도하고, 이로부터 하중조건에 상관없이 슬립의 영향을 적용할 수 있는 간편한 제안식을 유도하였다. 이러한 제안식의 타당성을 검증하기 위해서 현재 AISC에서 사용하고 있는 합성보의 유효강성 및 Nie가 제안한 식과 비교하였다. 일반적으로 사용되는 보의 경우, 전단슬립의 영향은 스팬이 짧을 경우, AISC에 비해서 최대 18%까지의 강성의 감소를 나타냄을 알 수 있었다. 완전합성보의 경우, AISC의 제안 값이 본 연구의 결과 보다 크게 나타났는데, 이는 안전측이 되지 못함을 알 수 있었으며, 불완전 합성보의 경우, AISC 제안식이 본 연구보다 강성을 과소 평가하는 결과를 나타내었다.

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Cost optimization of composite floor trusses

  • Klansek, Uros;Silih, Simon;Kravanja, Stojan
    • Steel and Composite Structures
    • /
    • 제6권5호
    • /
    • pp.435-457
    • /
    • 2006
  • The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

  • Dai, X.;Lam, D.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.517-539
    • /
    • 2010
  • This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.

2지점 상승.하강에 의한 3경간 연속 프리플렉스 합성보의 Prestressing 효과에 관한 연구 (A Study on the Prestressing Effect of Three Span Continuous Preflex Composite Bridges by Lifting Two Supports)

  • 구민세;정재운;김필식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.27-34
    • /
    • 1999
  • This study presents the concept and the effects of the lifting two supports method that makes get economical design sections and efficient stress condition. The analysis of relation between critical sections and ratios Is done. Also, connection between critical sections and design variable is analyzed. In order to resolve the effects of the lifting two supports method, sections which was designed with the existing method, lifting support method, are used. Finally, it is proved that the new method is more efficient than the existing methods in economy and structure.

  • PDF

Plastic analysis of steel arches and framed structures with various cross sections

  • Silva, Jessica L.;Deus, Lidiane R.R.M.;Lemes, Igor J.M.;Silveira, Ricardo A.M.
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.257-270
    • /
    • 2021
  • This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.

T형 합성보의 내력평가에 관한 연구 (A Study on the strength evaluation for T-type Composite Beam)

  • 김상모;김규석
    • 한국강구조학회 논문집
    • /
    • 제15권4호통권65호
    • /
    • pp.467-474
    • /
    • 2003
  • 일반적인 합성보는 콘크리트 슬래브와 H형강 철골보 사이에 작용하는 수평전단력을 쉬어코넥터로 긴결하여 휨내력 및 강성을 증가시킨 구조다. H형강대신 U형 철골을 사용하고 그 속에 콘크리트를 채운 새로운 형태의 합성보 시스템이라 할 수 있는 T형 합성보의 구조 특성을 실험에 의해 분석하고, 기존의 합성보 설계이론을 토대로 내력평가를 하는 데 그 목적이 있다. 또한 T형 합성보의 구조설계 및 시공에 필요한 기초자료를 제시하고자 한다.

강재매입형 합성기둥의 합성작용에 관한 실험 (Experiments on the Composite Action of Steel Encased Composite Column)

  • 정인근;민진;심창수;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.485-488
    • /
    • 2004
  • Steel encased composite columns have been used for buildings and piers of bridges. Since column section for pier is relatively larger than that of building columns, economical steel ratio need to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bonding and friction. However, the behavior. of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Shear strength obtained from the tests showed considerably higher than the design value. Confinement, mechanical interlock and stud connectors increased the shear strength and these values can be used effectively to obtain composite action of SRC columns.

  • PDF