The aim of this study is to investigate the impact behavior and impact-induced damage of sandwich composites made of E-glass/epoxy face sheets and PVC foam. The studies were carried out on square flat and curved sandwich panels with two different radius of curvatures. Impact tests were performed under impact energies of 10 J, 25 J and 80 J using an instrumented drop-weight machine. Contact force and displacement versus time and contact force- displacement graphs of sandwich panels were presented to determine the panel response. Through these graphs, the energy absorbing capacity of the sandwich panels was determined. The impact responses and failure modes of flat and curved sandwich panels were compared and the effect of curvature on sandwich composite panel was demonstrated. Testing has shown that the maximum contact force decrease while displacement increases with increasing of panel curvature and curved panels exhibits mixed failure mode, with cylindrical and cone cracking.
PURPOSES : The purpose of this paper is to demonstrate to the practicing engineers, how to apply the advanced composite materials theory to the road structures. For general construction material used, there is certain theoretical limit in sizes. For super road structure construction, the reduction in panel weight is the first step to take in order to break such size limits. METHODS : For a typical road structures panel, both concrete and advanced composite sandwich panels are considered. The concrete panel is treated as a special orthotropic plate. RESULTS : All types of advanced composite sandwich panels are considered as a self-weights less than one tenth of that of concrete panel. The concrete panel is treated as a special orthotropic plate to obtain more accurate result. CONCLUSIONS : Advanced composite sandwich panels are considered as a self-weights less than one tenth (10%) of that of concrete panel, with deflections less than that of the concrete panel. This conclusion gives good guide line for design of the light weight of road structures.
A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.
Lee Sang-Jin;Oh Kyung-Won;Jeong Jong-Cheol;Cho Se-Hyun;Seo Soung-il
Proceedings of the KSR Conference
/
2005.05a
/
pp.251-256
/
2005
This study was performed the heat transportation ratio of three types of the following sandwich panel by KS F 2278(2003) ; Type ${\sharp}1$ : Carbon/epoxy Aluminum Honeycomb and Balsa Core Sandwich Panel(Thickness : 37mm), Type ${\sharp}2$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 57mm), and Type ${\sharp}3$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 37mm). Also was performed the heat transportation of next three types of the following sandwich panel by KS F2277(2002) ; Type ${\sharp}4$ and ${\sharp}5$ : 27mm, and 35mm thick-Aluminum Honeycomb Sandwich Panels, and Type ${\sharp}6$ : 27mm thick-Foaming Aluminum Sandwich Panel. It is the larger area between the skin and core, the heat transportation ratio is the higher, and when it is composed of the hybrid composite structure, good insulation property was shown.
Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
Steel and Composite Structures
/
v.52
no.4
/
pp.391-403
/
2024
The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.26
no.6_spc
/
pp.667-673
/
2016
Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.
Transactions of the Korean Society of Automotive Engineers
/
v.15
no.6
/
pp.50-61
/
2007
The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.22
no.3
/
pp.414-420
/
2013
Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.
One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.
Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
Journal of Advanced Marine Engineering and Technology
/
v.30
no.2
/
pp.304-310
/
2006
A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.