• Title/Summary/Keyword: composite panels

Search Result 388, Processing Time 0.031 seconds

The behavior of adhesive joints affected by the geometry and stacking sequence of composite materials

  • Ait Kaci Djafar;Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Sahli Abderahmane
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.609-623
    • /
    • 2023
  • The objective of this study is to investigate the distribution of von Mises stress, peeling stress, and shear stress in the adhesive layer used to bond two composite panels, considering various parameters using a three-dimensional finite element method. The stiffness of the materials and the effect of the stacking order on the amount of load transferred to the adhesive layer were examined to determine which type of laminate generates less stress at the bond line. The study analyzed six different stacking sequences, all with a common first layer in contact with the adhesive and a 0° orientation. Additionally, the impact of using hybrid composites on reducing bond line stress was investigated.

Study of numerical analysis and experiment for composite pressure hull on buckling pressure (외압을 받는 복합재 셸의 좌굴해석을 위한 실험 및 수치 해석 연구)

  • Jung H. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.410-413
    • /
    • 2005
  • The results of an experimental and analytical study of composite pressure hull on buckling pressure are presented for LRN 300. Composite tensile test was done to know the composite material properties applied FE analysis for URN composite. We predicted the buckling and post buckling analysis of composite laminated cylindrical panels under external compression by using ABAQUS /Standard[Ver 6.4]. To obtain nonlinear static equilibrium solutions for unstable problems, where the load-displacement response can exhibit the type of nonlinear buckling behavior, during periods of the response, the load and/or the displacement may decrease as the solution evolves, used the modified Riks method. The modified Riks method is an algorithm that allows effective solution of such cases [7]. Experiments were conducted to verify the validation of present analysis for cross-ply laminated shells. The shells considered in the study have two different lamination patterns, $[{\pm}45/0/90]_{18s\;and}\;[/0/90]_{18s}$. Cylindrical panel of experiment and analysis have the radius of 200mm, length of 210mm and 60 degree of cutting angle. The critical load from experiment is $69\%$ of that of numerical analysis, because the fracture of matrix was generated before buckling. So URN 300 is not proper to use at the condition under high external pressue.

  • PDF

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

Evaluation of Structural Behaviour of a Composite CFT Truss Girder Bridge (CFT 트러스 거더 합성형교의 구조거동 평가)

  • Chung, Chul-Hun;Kim, Hye-Ji;Song, Na-Young;Ma, Hyang-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.149-159
    • /
    • 2010
  • This paper presents an experimental study on the structural behavior of composite CFT truss girder bridge with full depth precast panels. The length of span is 20,000 mm. The CFT truss girder is a tubular truss composed of chord members made of concrete-filled and hollow circular tubes. To determine fundamental structural characteristics such as the strength and deformation properties of composite CFT truss girder bridge, static and dynamic tests were conducted. The natural frequencies calculated by the FEM are in good agreement with experimental results obtained from dynamic test. Bracing have only a small effect on the natural frequencies of composite CFT truss girder bridge as indicated by the FEM results. The yield strength and deformation of the composite CFT truss girder bridges were investigated through a static bending test. Besides, the test results showed that uniform distribution of shear connectors can be applicable in composite CFT truss girder bridges.

Evaluation on Total Energy Consumption of Low-Energy House with Structural Insulated Panels (구조단열패널 적용 저에너지주택의 총에너지사용량 평가)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • This project is mainly related to evaluation of total energy consumption of low energy house, the exterior envelope of which was wholly composed of structural insulated panels(SIP). The U-value of applied SIP was in the range of 0.189 to $0.269W/m^2{\cdot}K$ and the U-value of pair glass from 0.78 to $1.298W/m^2{\cdot}K$ was applied for window dependent to its function respectively. For comparison of total energy performance, the energy simulation for pilot house was performed to compare with the control house having insulation criteria of Korean building regulation in 2009. Based on simulation of dynamic energy performance, the pilot house saved 48.3% of annual energy consumption while the control house in 2009 consumed as 85.7GJ/y. In case of heating, the result showed that the energy saving ratio amounted to 76.7%. For $CO_2$ emission, the pilot house diminished approximately 35.4% from $6,208.4kgCO_2$ to $4,009.2kgCO_2$. In payback period to early investment, it was analyzed the pilot house took 7.8 years, when the low energy house built by other insulation method with same thermal perfusion took 11.5 years. From this result, it is considered that the SIP is more effective, economic to Green Home application.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.

A Study on the Evaluation according to the Situation of Subway Station Canopy - Focused on the Subway Station in Daegu - (지하철역 캐노피의 설치현황에 따른 디자인 평가에 관한 연구 - 대구광역시 지하철역 캐노피를 대상으로 -)

  • Kim, Min-Hee;Kim, Jong-Ha;Lee, Jeong-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.3
    • /
    • pp.74-83
    • /
    • 2009
  • This study is subway station canopy evaluation to improve the landscape of a street furniture design. From a survey of the professional abstracted the design elements of subway station canopy in Daegu. And then, it practiced a canopy design appreciation by the analysis of appreciation items. The results are as follows. First, this research analyzes each quality a classified by the four characteristics at the subway station. In general station case, the slope roof was consistent in used to be unified. If the symbol of the express station wasn't common in cross-section or material. In addition, the design evaluation in the lower canopy were evaluated. Therefore, in case of the city installed in the canopy, the characteristic of city gateway and the symbolic characteristic of a design that is required. Second, subway station canopy existed in widely opened site come out a lower rating about safety. Therefore, considering the safety light device or system need to do. Third, if the horizontal or sloping roof shape come out in a lower rating, the highly evaluated curve shape is considered to apply. Forth, a structure material of the canopy was highly evaluated the aluminum composite panels and structural steel pipes. Therefore, to improve a beauty of the city, to give rhythm to a structure material of the canopy of the aluminum composite panels and structural steel pipes will be desirable to use as the main ingredient.

Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna (전개형 복합재료 반사판 안테나의 동특성 분석 및 시험)

  • Chae, Seungho;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Park, Sung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • The dynamic characteristics of the composite reflector panels are numerically and experimentally investigated. A dynamics model of the panel is analytically developed based on a deployment mechanism of the antenna. The deployment is passively activated using elastic energy of a spring with two rotational degrees of freedom. Using the flexible multi-body dynamic analysis ADAMS, dynamic behavior of the panels such as velocities, deformations, as well as reaction forces during the deployment, are investigated in the gravity and zero-gravity cases. The reflector panel is manufactured using carbon fiber reinforced plastics (CFRPs) and its deployment characteristics are experimentally observed using a zero-gravity deployment test. The impact response and vibration problems that occur during deployment of the antenna panel have been identified and reliably deployed using dampers.

Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns (BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향)

  • Lee, Hyerin;Cho, Junghyun;Lee, Seung-Geon;Lee, Su-Hyung;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.153-160
    • /
    • 2020
  • Columns are one of the most critical parts of a structural system subjected to earthquake excitations. In this regard, extensive experimental studies have been conducted to evaluate the effect of fiber reinforced polymer (FRP) wrapping on the seismic performance of reinforced concrete (RC) columns. Among them, many studies focused on the behavior of circular or square RC columns strengthened with CFRP or GFRP sheets. Since the cross-sectional shape affects confinement by FRP wrapping, its strengthening effect and final damage pattern may differ with shapes. In this study, a series of cyclic tests was conducted to investigate the seismic behavior of rectangular reinforced concrete columns strengthened with basalt-based fiber reinforced polymer (BFRP) sheets and composite fiber panels. The result shows that the effect of strengthening is not significant, and it implies a little increase of confinement by BFRP sheets and composite fiber panels, which is considered partly due to the cross-sectional shape of the columns.

Experimental Study on Connectability of Half-Depth Precast Deck Panels with Loop Joint (루프이음을 갖는 반단면 프리캐스트 바닥판 이음부 성능에 대한 실험적 연구)

  • Chung, Chul Hun;Sung, Yeol Eun;Hyun, Byung Hak;Park, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.581-590
    • /
    • 2008
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. In this paper, three types of the detail for joints was selected and their structural performance in terms of strength and crack contral was investigated through static tests on composite beams. Form the results, the validity of loop joints for continuity of half-depth precast deck was observed and especially an overlapping length of loop joint and transverse reinforcement were checked. The results suggest that increasing the loop overlapping length increases the flexural strength of half-depth precast deck with loop joints. In terms of crack contral, the loop joint with transverse reinforcement showed better performance.