Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.1.019

An experimental and numerical investigation on fatigue of composite and metal aircraft structures  

Pitta, Siddharth (Department of Physics, Division of Aerospace Engineering, Universitat Politecnica de Catalunya)
Rojas, Jose I. (Department of Physics, Division of Aerospace Engineering, Universitat Politecnica de Catalunya)
Roure, Francesc (Department of Strength of Materials and Structural Engineering, Universitat Politecnica de Catalunya)
Crespo, Daniel (Department of Physics and Barcelona Research Centre in Multiscale Science and Technology)
Wahab, Magd Abdel (Faculty of Mechanical, Electrical and Computer Engineering, School of Engineering and Technology, Van Lang University)
Publication Information
Steel and Composite Structures / v.43, no.1, 2022 , pp. 19-30 More about this Journal
Abstract
The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.
Keywords
adhesive bond; aluminium alloy; composite; fatigue; finite element; joints; rivets;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Sachse, R., Pickett, A., Essig, W. and Middendorf, P. (2017), "Experimental and numerical investigation of the influence of rivetless nut plate joints on fatigue crack growth in adhesively bonded composite joints", J. Fatigue, 105, 262-275. https://doi.org/10.1016/j.ijfatigue.2017.08.001.   DOI
2 Sadowski, T., Golewski, P. and Zarzeka-Raczkowska, E. (2011), "Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets", Comput. Mater. Sci., 50(4), 1256-1262. https://doi.org/10.1016/j.commatsci.2010.06.022.   DOI
3 Soykok, I.F. (2015), "End geometry and pin-hole effects on axially loaded adhesively bonded composite joints", Compos. Part B. Eng., 77, 129-138. https://doi.org/10.1016/j.compositesb.2015.03.031.   DOI
4 Sun, C., Bhawesh, K., Wang, P. and Sterkenburg, R. (2005), "Development of improved hybrid joints for composite structure", Compos. Struct., 35, 1-20.   DOI
5 Taib, A.A., Boukhili, R., Achiou, S., Gordon, S. and Boukehili, H. (2006), "Bonded joints with composite adherends. part I. effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture", J. Adhesion Adhesives, 26(4), 226-236. https://doi.org/10.1016/j.ijadhadh.2005.03.015.   DOI
6 Waghmare, A.K. and Sahoo, P. (2015), "Adhesive friction at the contact between rough surfaces using n-point asperity model", Eng. Sci. Technol., 18(3), 463-474. https://doi.org/10.1016/j.jestch.2015.03.006.   DOI
7 Quaresimin, M. and Ricotta, M. (2006), "Life prediction of bonded joints in composite materials", J. Fatigue, 28(10), 1166-1176. https://doi.org/10.1016/j.ijfatigue.2006.02.005.   DOI
8 Ireman, T., Nyman, T. and Hellbom, K. (1993), "On design methods for bolted joints in composite aircraft structures", Compos. Struct., 25(1-4), 567-578. https://doi.org/10.1016/0263-8223(93)90205-5.   DOI
9 Jadee, K.J. and Othman, A. (2011), "Fiber reinforced composite structure with bolted joint-a review", in: Key Engineering Materials, 471, 939-944. https://doi.org/10.4028/www.scientific.net/KEM.471-472.939.   DOI
10 Cai, Y. and Young, B. (2018). "Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures", Steel Compos. Struct., 29(2), 273-286. http://dx.doi.org/10.12989/scs.2018.29.2.273.   DOI
11 Van Blaricum, T., Bates, P. and Jones, R. (1989), "An experimental investigation into the effect of impact damage on the compressive strength of step lap joints", Eng. Fracture Mech., 32(5), 667-674. https://doi.org/10.1016/0013-7944(89)90165-3.   DOI
12 Kahraman, R., Sunar, M. and Yilbas, B. (2008) "Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive", J. Mater. Process. Technol., 205(1-3), 183-189. https://doi.org/10.1016/j.jmatprotec.2007.11.121.   DOI
13 Kelly, G. (2006), "Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints", Compos. Struct., 72(1), 119-129. https://doi.org/10.1016/j.compstruct.2004.11.002.   DOI
14 Moradi, A., Carrere, N., Leguillon, D., Martin, E. and Cognard, J.Y. (2013), "Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: effect of material and geometrical parameters", J. Adhesion Adhesives, 47, 73-82. https://doi.org/10.1016/j.ijadhadh.2013.09.044.   DOI
15 Paroissien, E., Sartor, M., Huet, J. and Lachaud, F. (2007), "Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint", J. Aircraft, 44(2), 573-582. https://doi.org/10.2514/1.24452.   DOI
16 Pitta, S., de la Mora Carles, V., Roure, F., Crespo, D. and Rojas, J.I. (2018), "On the static strength of aluminium and carbon fibre aircraft lap joint repairs", Compos. Struct., 201, 276-290. https://doi.org/10.1016/j.compstruct.2018.06.002.   DOI
17 Pitta, S., Roure, F., Crespo, D. and Rojas, J.I. (2019), "An experimental and numerical study of repairs on composite substrates with composite and aluminum doublers using riveted, bonded, and hybrid joints", Materials, 12(18), 2978. https://doi.org/10.3390/ma12182978.   DOI
18 Chen, Q., Guo, H., Avery, K., Kang, H. and Su, X. (2018), "Mixed-mode fatigue crack growth and life prediction of an automotive adhesive bonding system", Eng. Fracture Mech., 189, 439-450. https://doi.org/10.1016/j.engfracmech.2017.11.004.   DOI
19 Cheng, X., Zhang, J., Zhang, J., Liu, P., Cheng, Y. and Xu, Y. (2018), "Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging", Steel Compos. Struct., 26(3), 265-272. http://dx.doi.org/10.12989/scs.2018.26.3.265.   DOI
20 Chowdhury, N.M., Wang, J., Chiu, W.K. and Chang, P. (2016), "Static and fatigue testing bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy laminates used on aircraft structures", Compos. Struct., 142, 96-106. https://doi.org/10.1016/j.compstruct.2016.01.078.   DOI
21 AC 20-107B (2010), Composite Aircraft Structure, US Department of Transportation, Federal Aviation Administration; USA.
22 Da Silva, L.F., Rodrigues, T., Figueiredo, M., De Moura, M. and Chousal, J. (2006), "Effect of adhesive type and thickness on the lap shear strength", J. Adhesion, 82(11), 1091-1115. https://doi.org/10.1080/0218460600948511.   DOI
23 Ezzine, M., Madani, K., Tarfaoui, M., Touzain, S. and Mallarino, S. (2019), "Comparative study of the resistance of bonded, riveted and hybrid assemblies; experimental and numerical analyses", Struct. Eng. Mech., 70(4), 467-477. http://dx.doi.org/10.12989/sem.2019.70.4.467.   DOI
24 25.571-1D (2011) Damage tolerance and fatigue evaluation of structure, Federal Aviation Administration; Washington, DC, USA.
25 Grant, L., Adams, R.D. and da Silva, L.F. (2009), "Experimental and numerical analysis of single-lap joints for the automotive industry", J. Adhesion Adhesives, 29(4), 405-413. https://doi.org/10.1016/j.ijadhadh.2008.09.001.   DOI
26 Huilong, R., Xiaoying, Z. and Timon, R. (2017), "Dual-horizon peridynamics: A stable solution to varying horizons", Computer Methods Appl. Mech. Eng., 318, 762-782. https://doi.org/10.1016/j.cma.2016.12.013.   DOI
27 Rabczuk, R. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", J. Numberical Methods Eng., 61, 2316-2343. https://doi.org/10.1002/nme.1151.   DOI
28 Krueger, R. (2004), "Virtual crack closure technique: History, approach, and applications", Appl. Mech. Rev., 57(2), 109-143. https://doi.org/10.1115/1.1595677.   DOI
29 Adams, R.D. (2005), Adhesive Bonding: Science, Technology and Applications, Woodhead Publishing Limited, Cambridge, United Kingdom.
30 Ashcroft, I.A. and Crocombe, A.D. (2008), Modelling Fatigue in Adhesively Bonded Joints, In: Modeling of Adhesively Bonded Joints, 183-223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79056-3_7.   DOI
31 Kweon, J.H., Jung, J.W., Kim, T.H., Choi, J.H. and Kim, D.H. (2006), "Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding", Compos. Struct., 75(1-4), 192-198. https://doi.org/10.1016/j.compstruct.2006.04.013.   DOI
32 Leena, K., Athira, K., Bhuvaneswari, S., Suraj, S. and Rao, V.L. (2016), "Effect of surface pre-treatment on surface characteristics and adhesive bond strength of aluminium alloy", J. Adhesion Adhesives, 70, 265-270. https://doi.org/10.1016/j.ijadhadh.2016.07.012.   DOI
33 Meran, A.P. and Samanci, A. (2017), "Analysis of various composite patches effect on mechanical properties of notched al-mg plate", Steel Compos. Struct., 25(6), 685-692. https://dx.doi.org/10.12989/scs.2017.25.6.685.   DOI
34 Jen, Y.M. and Ko, C.W. (2010), "Evaluation of fatigue life of adhesively bonded aluminum single-lap joints using interfacial parameters", J. Fatigue, 32(2), 330-340. https://doi.org/10.1016/j.ijfatigue.2009.07.001.   DOI
35 Campilho, R.D., Moura, D., Banea, M.D. and da Silva, L.F.M. (2015), "Adhesive thickness effects of a ductile adhesive by optical measurement techniques", J. Adhesion Adhesives, 57, 125-132. https://doi.org/10.1016/j.ijadhadh.2014.12.004.   DOI
36 Donough, M., Gunnion, A., Orifici, A. and Wang, C. (2015), "Plasticity induced crack closure in adhesively bonded joints under fatigue loading", J. Fatigue, 70, 440-450. https://doi.org/10.1016/j.ijfatigue.2014.07.003.   DOI
37 Matsuzaki, R., Shibata, M. and Todoroki, A. (2008), "Improving performance of GFRP/aluminum single lap joints using bolted/co-cured hybrid method", Compos Part A: Appl. Sci. Manufact., 39(2), 154-163. https://doi.org/10.1016/j.compositesa.2007.11.009.   DOI
38 Carrere, N., Martin, E. and Leguillon, D. (2015), "Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints", Eng. Fracture Mech., 138, 185-201. https://doi.org/10.1016/j.engfracmech.2015.03.004.   DOI
39 Pitta, S., Rojas, J.I and Crespo, D. (2020), Comparison of the response of different configurations of aircraft repair patches under static and dynamic loading, Ph.D. Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain. http://hdl.handle.net/2117/32818.
40 Xu, W., Yu, H. and Tao, C. (2015) "Damage and stress evolution in the bondlines of metallic adhesively bonded joints accompanied by bondline thickness effect", J. Adhesion Adhesives, 59, 86-97. https://doi.org/10.1016/j.ijadhadh.2015.02.007.   DOI
41 Talebi, H., Silani, M., Bordas, S.P.A., Kerfriden, P. and Rabczuk, T. (2014), "A computational library for multiscale modeling of material failure", Comput. Mech., 53, 1047-1071. https://doi.org/10.1007/s00466-013-0948-2.   DOI
42 Azzeddine, N., Benkheira, A., Fekih, S. M. and Belhouari, M. (2020), "Numerical study of bonded composite patch repair in damaged laminate composites", Adv. Aircraft Spacecraft Sci., 7(2), 151-168. http://dx.doi.org/10.12989/aas.2020.7.2.151.   DOI
43 Collings, T.A. (1977), "The strength of bolted joints in multi-directional CFRP laminates", Composites, 8(1), 43-55. https://doi.org/10.1016/0010-4361(77)90027-1.   DOI
44 Mishra, P., Pradhan, A., Pandit, M., Panda, S. (2020), "Thermoelastic effect on inter-laminar embedded de-lamination characteristics in spar wingskin joints made with laminated FRP composites", Steel Compos. Struct., 35(3), 439-447. https://dx.doi.org/10.12989/scs.2020.35.3.439.   DOI
45 Mohammed, A.M., Cuong, N.H., Zi, G., Areias, P., Zhuang, X and Timon, R. (2018), "Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model", Eng. Fracture Mech., 188, 287-299. https://doi.org/10.1016/j.engfracmech.2017.08.002.   DOI
46 Mollenhauer, D.H., Fredrickson, B., Schoeppner, G., Iarve, E.V. and Palazotto, A. (2007), "Analysis and measurement of scarf-lap and step-lap joint repair in composite laminates", Proceedings of the 16th International Conference on Composite Materials, Vol 2, Kyoto, July.
47 Abdel Wahab, M. (2012), "Fatigue in adhesively bonded joints: A review", Scholary Res. Notice, 2012, 746308. https://doi.org/10.5402/2012/746308.   DOI
48 Ajaei, B.B. and Soyoz, S. (2020). "Analytical and experimental fatigue analysis of wind turbine tower connection bolts", Wind Struct., 31(1), 1-14. https://doi.org/10.12989/was.2020.31.1.1.   DOI
49 Ankersen, J. and Davies, G.A.O. (2009), "Interface elements-advantages and limitations in CFRP delamination modelling", 17th International Conference on Composite Materials, Edinburgh, July.
50 Bernasconi, A., Jamil, A., Moroni, F. and Pirondi, A. (2013), "A study on fatigue crack propagation in thick composite adhesively bonded joints", J. Fatigue, 50, 18-25. https://doi.org/10.1016/j.ijfatigue.2012.05.018.   DOI
51 Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. http://dx.doi.org/10.12989/scs.2019.31.2.113.   DOI
52 Campbell, F. (2004), Fibres and Reinforcements: The String That Provides the Strength, Manufacturing Processes for Advanced Composites, Elsevier, Oxford, United Kingdom.