• 제목/요약/키워드: composite method

검색결과 6,508건 처리시간 0.036초

중공 PC기둥을 적용한 복합공법의 공사비 분석 (Cost Analysis of Composite Method Using Hollow-PC Column)

  • 박병훈;김재엽
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 추계 학술논문 발표대회
    • /
    • pp.71-72
    • /
    • 2016
  • Most of studies on PC method aim at the structural analysis and development of PC members, and studies on the construction management aspect are insufficient. Therefore, this study tries to investigate 'hallow PC column composite method(HPC composite method)' from the viewpoint of construction management and analyze the construction cost of the composite method. On the assumption that each comparative method was applied to the zone, the difference in construction cost between the two methods was analyzed. As a result, HPC composite method increased the initial investment cost because of its factor technology, but reduced transport cost, lifting cost, and installation cost through lightweight columns. This study analyzed only the difference in construction cost of HPC composite method so that it has the limitation in evaluating its economy. Therefore, to evaluate the economy of HPC composite method, it is considered to research more the construction cost of HPC composite method.

  • PDF

압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구 (Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method)

  • 황희윤
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

배합비에 따른 혼합토의 비중 산정 (Estimation of Specific Gravity of Soil Mixture)

  • 신현영;김경오;김유석;박진우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.951-954
    • /
    • 2010
  • There are lots of soft ground improvement methods which is consist of different materials. In the analysis and design, composite ground method is usually regarded. Composite ground method considers the area replacement ratio as a key parameter to combine the physical and mechanical characteristics of tow different material. In this study, using composite material consist of three different materials which have different diameters, series of specific gravity test were performed according to KS F 2308, to investigate the applicability of composite ground method. As a result, it is found that composite material which is consist of fine grained soil and granular soil has a high applicability of composite ground method. This result means that, in estimating of ground properties of composite material which is consist of similar fine grained material such as cement mixing etc., composite ground method has a less applicability.

  • PDF

대형 풍력발전용 필라멘트 와인딩 복합재 타워의 좌굴 해석 (Buckling Analysis of Filament-wound Composite Towers for Large Scale Wind-Turbine)

  • 한정영;홍철현
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.79-84
    • /
    • 2011
  • The purpose of this study was to investigate the buckling load of filament-wound composite towers for large scale wind-turbines using the finite element method (FEM). To define the material properties, we used both the effective property method and stacking properties method. The effective properties method assumes that a composite consists of one ply. The stacking properties method assumes that a composite consists of several stacked plies. First, a linear buckling analysis of the tower, filament-wound with angles of $[{\pm}60]$, was carried out using the two methods for composite material properties: the stacking method and effective method. An FE analysis was also performed for the composite towers using the filament winding angles of $[{\pm}30]$, $[{\pm}45]$, and $[{\pm}60]$. The FE analysis results using the stacking properties of the composite were in good agreement with the results from the effective properties method. The difference between the FEM results and material properties method was approximately 0~2.3%. Above the angle of $[{\pm}60]$, there was little change in the buckling load.

반응면 기법을 이용한 적층복합재료판의 신뢰성해석 (Reliability Analysis of laminated Composite Panel using Response Surface Method)

  • 방제성;김용협
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2001
  • Response surface method is applied to evaluate the reliability of laminated composite panels. Since the linear and nonlinear first-ply failure load are computed using deterministic finite element analysis, new probabilistic finite element analysis is not necessary. Tsai-Wu criterion is used to construct the limit state suface. Material properties, layer thickness and lamina strengths of laminated composite panel are treated as random design variables. feasibility and accuracy of current method is validated using Monte-Carlo method Which perform thousand times of finite element analysis directly.

  • PDF

최적 제어를 통한 복합적층판의 형상최적화 (Shape Optimization in Laminated Composite Plates by Volume Control)

  • 한석영;백춘호;박재용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.277-282
    • /
    • 2003
  • The growth-strain method was applied to cutout optimization in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value. In this study, of particular interest is to see whether the growth-strain method developed for shape optimization in isotropic media would work for laminated composite Plates. In volume control of the growth-strain method, it makes Tsai-Hill value at each element uniform in laminated composite plates under the predetermined volume. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions and predetermined volumes of laminated composite plates. As a result, it was verified that volume control of the growth-strain method worked very well for cutout optimization in laminated composite plates.

  • PDF

대형 풍력 발전용 필라멘트 와인딩 복합재 타워의 고유 진동수 해석에 관한 연구 (Modal Analysis of Filament-wound Composite Towers for Large Scale Wind-Turbine)

  • 홍철현
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.73-78
    • /
    • 2011
  • The purpose of this study was to investigate the natural frequency of filament-wound composite towers for large scale wind-turbines using the finite element method (FEM). To define the material properties, we used both the effective property method and the stacking properties method. The effective properties method assumes that a composite consists of one ply. The stacking properties method assumes that a composite consists of several stacked plies. First, a modal analysis of the tower, filament-wound with angles of $[{\pm}30]$, was carried out using the two methods for composite material properties, the stacking method and effective method. Then, an FE analysis was performed for composite towers using filament winding angles of $[{\pm}30]$, $[{\pm}45]$, and $[{\pm}60]$. The FE analysis results using the stacking properties of the composite were in good agreement with the results from the effective properties method. The difference between the FEM and material properties methods was approximately 0~0.6%

Shear lag effect in steel-concrete composite beam in hogging moment

  • Luo, Da;Zhang, Zhongwen;Li, Bing
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.27-41
    • /
    • 2019
  • Shear lag effect can be an important phenomenon to consider in design of the steel-concrete composite beams. Researchers have found that the effect can be strongly related with the moment distribution, the stiffness and the ductility of the composite beams. For continuous composite beams expected to sustain hogging moment, the shear lag effect can be more distinct as cracking of the concrete slab reduces its shear stiffness. Despite its influences on behaviour of the steel-concrete composite beams, a method for calculating the shear lag effect in steel-concrete composite beams sustaining hogging moment is still not available. Shear lag effect in steel-concrete composite beams sustaining hogging moment is investigated in this paper. A method was proposed specifically for predicting the effect in the cracked part of the steel-concrete composite beam. The method is validated against available experimental data. At last, FE studies are conducted for steel-concrete composite beams with different design parameters, loading conditions and boundary conditions to further investigate the shear lag effect and compare with the proposed method.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.