• Title/Summary/Keyword: composite members

Search Result 598, Processing Time 0.024 seconds

In-situ Production Analysis of Composite Precast Concrete Members of Green Frame

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.501-514
    • /
    • 2011
  • Recently, there have been many cases in which the difficulty of repair and replacement of principal elements in the bearing wall structure for apartment buildings, which is a major part of apartment buildings in Korea, has led to the reconstruction of buildings rather than their remodeling. To address this problem, the Korea government now allows a floor area ratio of up to 20 %, and has relaxed the building height limits to encourage the use of a rahmen structure instead of a bearing wall structure. However, since reinforced concrete rahmen structures have many problems, including higher floor height and greater construction cost, a great deal of research into rahmen composite precast concrete structures have been conducted. Green Frame, one of the developed prototypes, is expected to provide economic benefits through in-situ production for precast concrete column and beam. For in-situ production of composite precast concrete members, a detailed plan for production, curing, and installation is needed. However, it needs to be confirmed that the space is sufficient to produce the precast concrete members on-site before planning those activities. Therefore, this study proposes in-situ production analysis of composite precast concrete members of Green Frame with the evaluation of structural safety and available area on the parking structure. The result of this study shows that the in-situ production of precast concrete members is possible through a case study.

Structural Design Guide Line of Composite Beam (내화피복이 생략된 합성보의 구조설계지침 제정을 위한 고찰)

  • Hong, Won-Kee;Kim, Jin-Min;Lee, Kyoung-Hun;Park, Seon-Chee;Kim, Jeom-Han
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.93-98
    • /
    • 2008
  • As high rise buildings and large span spatial structures are constructed, new composite members and construction techniques are continuously developed. Wide flange steel beam can be easily constructed but the fire proofing protection is necessary and the cost is high. Nowadays environmental pollution of structures is becoming a big issue. The material of fire proofing protection is not allowed to use for structural members in several countries because it cab be a cause of environment pollution. Composite beam is a new hybrid beam system which is not needed a fire proofing protection process. Composite beam has better construction capacity than that of RC system and has more economic advantages than that of wide flange steel beam. In this paper, structural design guide lines of composite beam were provided to apply design and construction.

Flexural Strength of cold-formed steel built-up composite beams with rectangular compression flanges

  • Dar, M. Adil;Subramanian, N.;Dar, Dawood A.;Dar, A.R.;Anbarasu, M.;Lim, James B.P.;Mahjoubi, Soroush
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The past research on cold-formed steel (CFS) flexural members have proved that rectangular hollow flanged sections perform better than conventional I-sections due to their higher torsional rigidity over the later ones. However, CFS members are vulnerable to local buckling, substantially due to their thin-walled features. The use of packing, such as firmly connected timber planks, to the flanges of conventional CFS lipped I-sections can drastically improve their flexural performance as well as structural efficiency. Whilst several CFS composites have been developed so far, only limited packing materials have been tried. This paper presents a series of tests carried out on different rectangular hollow compression flanged sections with innovative packing materials. Four-point flexural tests were carried out to assess the flexural capacity, failure modes and deformed shapes of the CFS composite beam specimens. The geometric imperfections were measured and reported. The North American Specifications and Indian Standard for cold-formed steel structures were used to compare the design strengths of the experimental specimen. The test results indicate clearly that CFS rectangular 'compression' flanged composite beams perform significantly better than the conventional rectangular hollow flanged CFS sections.

The Composite Action of Composite Truss Using H-Shaped Section Steel (H형강을 사용한 합성트러스의 합성효과)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.637-646
    • /
    • 2009
  • The composite actions of truss beams and floor slabs are not reflected on the design of the truss beam in domestic practice. In this research, basic experiments were conducted on a composite truss with the top and bottom chord members consisting of the H-shaped members. The tests were performed to evaluate the mechanical behaviors of the composite truss on the effects with the shear studs and without them. The specimens consisted of the steel truss and non-composite and composite trusses, and one-point-concentrated loading at the center and equivalent loading were monotonically applied. The composite effects were experimentally identified in the composite trusses using the shear stud connectors.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

Analysis of Fire-Damaged SRC Columns with High Strength (화재 피해를 고강도 SRC 압축부재의 해석적 연구)

  • Choi, Eun-Gyu;Seo, Ji-Min;Shin, Yeong-Soo;Lee, Cha-Don;Kwon, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.434-437
    • /
    • 2006
  • Structures tend to become high-rise, large and specialized due to the urban concentration. Technology related to the structure and construction is required to improve, for which the use of high strength concrete(HSC) with better material property, and composite member with the combined advantage of both concrete and steel for better performance, is suggested. Over a half of fires, which increase by over 10% every year recently, come from the architectural structure, causing a loss at national level. However, little study has been conducted on the member at high temperature despite the increase in the use of HSC composite members. In this study, the techniques of modeling for analysing by DIANA (Displacement Analyzer) the fire damaged HSC composite compressive members are researched. We can review the effect of change in the steel ratio, section size and the steel ratio on the residual strength of structural members by parameter analysis study.

  • PDF

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

A practical approach for fire safety design of fire-resistant steel members

  • Li, Guo-Qiang;Ding, Jun;Sakumoto, Y.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.71-86
    • /
    • 2005
  • Based on the test data of Nippon Steel Corporation, the formulas for calculating mechanical properties of fire-resistant (FR) steel at elevated temperatures have been established. A practical approach for fire safety design of FR steel members, including axially compressed members, flexural members and eccentrically compressed members, is developed in this paper. Compared with the full-scale specimen experiments and FEM numerical analysis, this practical approach for fire safety design of FR steel members is demonstrated to be effective and precise.

Analysis of the Stress-Strain Relationship of Concrete Compression Members Strengthened by Composite Materials (고분자복합재료 보강 콘크리트 압축부재의 응력-변형률 관계 해석)

  • 이상호;장일영;김효진;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.717-720
    • /
    • 1999
  • Recently, the fiber composite materials such as carbon fiber, glass fiber, or aramid, have been frequently used in strengthening reinforced concrete structures. The fiber composite materials typically have orthotropic characteristic and the strength changes significantly acording to the direction of fibers and the method of the lamination. In this study, an algorithm to estimate the stress-strain relationship of the composite materials which have different fiber directions and symmetric or non-symmetric lamination has been developed by using Tsai-Hill and Tsai-Wu failure criteria and progressive laminate failure theory. This algorithm has been implemented to several stress-strain models for the laterally confined concrete compression members such as Mander, Hosotani, and Nakatsuka. The evaluated stress-strain behaviors by the different models are discussed.

  • PDF

Iterative global-local procedure for the analysis of thin-walled composite laminates

  • Afnani, Ashkan;Erkmen, R. Emre
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.693-718
    • /
    • 2016
  • This paper presents a finite element procedure based on Bridging multi-scale method (BMM) in order to incorporate the effect of local/cross-sectional deformations (e.g., flange local buckling and web crippling) on the global behaviour of thin-walled members made of fibre-reinforced polymer composite laminates. This method allows the application of local shell elements in critical regions of an existing beam-type model. Therefore, it obviates the need for using computationally expensive shell elements in the whole domain of the structure, which is otherwise necessary to capture the effect of the localized behaviour. Consequently, highly accurate analysis results can be achieved with this method by using significantly smaller finite element model, compared to the existing methods. The proposed method can be used for composite polymer laminates with arbitrary fibre orientation directions in different layers of the material, and under various loading conditions. Comparison with full shell-type finite element analysis results are made in order to illustrate the efficiency and accuracy of the proposed technique.