• 제목/요약/키워드: composite building structure

검색결과 219건 처리시간 0.026초

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

프리캐스트 콘크리트 부재의 현장생산용 증기 양생 방법 개발 연구 (Study on Development of Steam Curing Method for In-situ production of Precast Concrete members)

  • 성수진;임채연;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.71-72
    • /
    • 2014
  • Green Frame is a building frame system to construct a column-beam structure using composite precast concrete members. To reduce the cost of producing precast concrete, in-situ production of members is required. However, when the structural members are produced on site, it needs a large space for production. So, "Just-In-Time" production method should be adopted. For Just-In-Time to be realized, the early strength of members should be ensured for them to be transported. Thus, steam curing to secure the early strength is applied in Green Frame. Yet, a large-scale steam curing system is not possible for in-situ production of precast concrete. A smaller steam curing system is needed. In this regard, the study is aimed to develop a new steam curing method applicable to the in-situ production of precast concrete.

  • PDF

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구 (Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber)

  • 지현욱;;유성수;강정희
    • 상하수도학회지
    • /
    • 제34권2호
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

건축적용을 위한 다공성 물질을 이용한 상안정 PCM 제조 (Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings)

  • 정수광;유슬기;장슬애;박진성;김태현;이정훈;김수민
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.432-437
    • /
    • 2013
  • The increase of greenhouse gas emission and decrease of fossil fuel are being caused by the indiscreet consumption of energy by people. Recently, green policy has been globally implemented to reduce energy consumption. This paper studied the research to reduce the energy consumption in buildings, by using the heat storage properties of PCM. PCM has to prevent leakage from the liquid state. Therefore, we prepared form stable PCM, by using the vacuum impregnation method. Three kinds of organic PCMs were impregnated into the structure of porous material. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysis.

건물에너지 저감을 위한 PCM/diatomite composites의 제조 및 특성 분석 (Preparation and characteristic analysis of PCM/diatomite composites for building energy saving)

  • 전지수;정수광;김수민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.470-474
    • /
    • 2012
  • This paper deals with the thermal performances of PCM/diatomite composites for energy saving. The PCM/diatomite composites were prepared by incorporating PCMs in the pores of diatomite to increase form stability of PCMs. In experiment, we used the hexadecane, octadecane and paraffin as PCM and they have each 254.7 J/g, 247.6 J/g and 144.6 J/g of latent heat capacity, and those melting points are $20.84^{\circ}C$, $30.40^{\circ}C$ and $57.09^{\circ}C$, respectively. Thermal properties of PCM/diatomite composites were determined by using DSC. And PCM/diatomite composites were characterized by SEM and FTIR analysis. The results showed that the PCMs are well infiltrated into the structure of diatomite andt he latent heat capacity of PCM/diatomite composites was obtained by 40% of pure PCMs.

  • PDF

면섬유가 보강된 폴리우레탄계 복합시트의 기초 물성 평가 (Evaluation on the Basic Properties of Polyurethane Composite Sheet Reinforced with Non-Woven Fabric)

  • 김지현;도승배;박정원;남기융;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.238-239
    • /
    • 2017
  • Waterproofing is a very important process in terms of durability of buildings. The materials used for waterproofing work to protect the concrete structure from external deterioration factors. In particular, the waterproofing materials applied to the exterior of the concrete structure have various problems due to changes in the external environment and variables in the construction process. The waterproof layer is repeatedly dried and shrunk according to changes in the external moisture environment, and the surface may be deteriorated due to exposure to long-term sunlight. In the case of the roof waterproofing in the structure, the waterproof layer which does not have a sufficient curing period shows much swelling and floating phenomenon. These defects, such as swelling and lifting, account for most of the defects that occur in the waterproof layer of the concrete slabs. Generally, it is difficult to expect the same level of performance as the initial state even if the waterproofing work is repaired when a defect occurs. Therefore, it is possible to reduce the defects of the waterproof layer such as swelling and lifting by forming a waterproof layer which can be integrated with the concrete surface by using a polyurethane type waterproofing material having a relatively low defective ratio compared to other waterproofing materials. So in this study, the basic properties of polyurethane waterproof sheet reinforced with non-woven fabric are investigated in order to understand field applicability.

  • PDF

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Structural Design and Construction for Tall Damped Building with Irregularly-Shaped Plan and Elevation

  • Yamashita, Yasuhiko;Kushima, Soichiro;Okuno, Yuuichirou;Morishita, Taisei
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.255-264
    • /
    • 2018
  • This paper introduces three distinctive means for the use of a 189-meter high damped structure ensuring safety against earthquake: 1. Realization of L-shaped elevational structural planning: The bottom and top of the tower have belt trusses and hat trusses respectively to restrain the bending deformation. Furthermore, large-capacity oil dampers (damping force 6,000 kN) are installed in the middle part of the tower to restrain the higher-mode deformation. 2. Realization of L-shaped planar structural planning: We devised a means of matching the centers of gravity and rigidity by adjusting planar rigidity. Moreover, viscous damping devices are located at the edges of the L-shaped plan, where torsional deformation tends to be amplified. We call this the "Damping Tail" system. 3. Composite foundation to equalize deformations under different loading conditions: We studied the vertical and horizontal deformations using sway-rocking and 3D FEM models including the ground, and applied multi-stage diameter-enlarged piles to the tower and a mat foundation to the podium to keep the foundations from torsional deformations and ensure structural safety.

Raffles City in Hangzhou China -The Engineering of a 'Vertical City' of Vibrant Waves-

  • Wang, Aaron J.
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.33-47
    • /
    • 2017
  • This mixed-use Raffles City (RCH) development is located near the Qiantang River in Hangzhou, the capital of Zhejiang province, located southwest of Shanghai, China. The project incorporates retail, offices, housing, and hotel facilities and marks the site of a cultural landscape within the Quianjiang New Town Area. The project is composed of two 250-meter-tall twisting towers with a form of vibrant waves, along with a commercial podium and three stories of basement car parking. It reaches a height of 60 stories, presenting views both to and from the Qiantang River and West Lake areas, with a total floor area of almost 400,000 square meters. A composite moment frame plus concrete core structural system was adopted for the tower structures. Concrete filled steel tubular (CFT) columns together with steel reinforced concrete (SRC) beams form the outer moment frame of the towers' structure. The internal slabs and floor beams are of reinforced concrete. This paper presents the engineering design and construction of this highly complex project. Through comprehensive discussion and careful elaboration, some conclusions are reached, which serve as a reference guide for the design and construction of similar free-form, hybrid, mix-use buildings.