• Title/Summary/Keyword: composite breakwaters

Search Result 13, Processing Time 0.034 seconds

An Application of ALM-BFGS Algorithm for the Optimum Section Design of Composite Breakwaters (ALM-BFGS 알고리즘을 이용한 혼성방파제의 최적단면설계에 관한 연구)

  • Seo, Kyung Min;Ryu, Yeon Sun;Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.197-205
    • /
    • 1992
  • For the optimal design of composite breakwaters, a computer program PROCOBRA is developed using the combined ALM-BFGS algorithm. A model formulation for the section design optimization problem of composite breakwaters is proposed where a concept of subsectional weighting factors is introduced in the objective function. Usability of the program is verified through a numerical example. From the study, it is found that the ALM-BFGS method is reliable and can be effectively applied for the design optimization of coastal structures. Compared with conventional design process, it is proved that the economical design of composite breakwaters is possible.

  • PDF

Evaluation of Partial Safety Factors on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Kwon, Hyuk-Jae;Lee, Sun-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.267-277
    • /
    • 2009
  • Partial safety factors of the load, resistance, and reliability function are evaluated according to the target probability of failure on sliding mode of monolithical vertical caisson of composite breakwaters. After reliability function is formulated for sliding failure mode of caisson of composite breakwaters regarding bias of wave force, uncertainties of random variables related to loads, strengths are analyzed. Reliability analysis for the various conditions of water depth, geometric, and wave conditions is performed using Level II AFDA model for the sliding failure. Furthermore, the reliability model is also applied to the real caisson of composite breakwaters of Daesan, Dong- hae, and Pohang harbor. By comparing the required width of caisson of composite breakwater according to target probability of failure with the other results, the partial safety factors evaluated in this study are calibrated straightforwardly. Even though showing a little difference on the 1% of target probability, it may be found that the present results agree well with the other results in every other target probability of failure.

Wave Reflection Control Functions of Mounds for a Foundation of Breakwaters (방파제 기초 mound부의 반사파 제어기능에 관한 연구)

  • Ryu Cheong-Ro;KIM Jong-In
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.370-378
    • /
    • 1987
  • Wave reflection control functions of mound for the foundation of composite and perforated break-waters were investigated through the theoretical considerations. The theory developed is based on a simple summation of components of reflected waves. The applicability of the theory is assured by the comparative studies of the theoretical calculation and experimental data on the sea surface elevation in front of a breakwater. It is found that the reflection is mainly controlled by depth and width of the mound. In the design of composite type perforated breakwaters, the width of perforated part of the upright section can be decreased to less than half of the conventional design width for the same reflection by using the reflection control function of mound part and the reflection can be reduced until less than $30\%$ of that in the composite breakwaters. Using the results, a design method of mounds is proposed, by which the reduction of wave reflection is assured under the given wave conditions.

  • PDF

Probability of Failure on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 파괴확률)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.95-107
    • /
    • 2002
  • A reliability analysis on sliding of monolithic vertical caisson of composite breakwaters is extensively carried out in order to make the basis for the applicability of reliability-based design method. The required width of caisson of composite breakwaters is determined by the deterministic design method including the effect of impulsive breaking waves as a function of water depth, also studied interactively with the results of reliability analyses. It is found that the safety factor applied in current design may be a little over-weighted magnitude for the sliding of caisson. The reliability index/failure probability is also seen to slowly decrease as the water depth increases for a given wave condition and a safety factor. In addition, optimal safety factor can roughly be evaluated by using the concept of target reliability index for several incident waves. The variations of optimal safety factor may be resulted from the different wave conditions. Finally, it may be concluded from the sensitivity studies that the reliability index may be more depended on the incident wave angles and the wave periodsrather than on the bottom slopes and the thickness of rubble mound.

Sliding Failure of Vertical Caisson of Composite Breakwater due to Occurrence of Extreme Waves Exceeded Design Conditions (고파랑 출현에 따른 혼성제 직립 케이슨의 활동파괴)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.219-230
    • /
    • 2002
  • The sliding stability of monolithic vertical caisson of composite breakwaters is quantitatively analyzed by using a reliability model, FMA of Level II, in order to study the variation of sliding failure of caisson due to the occurrence of extreme waves exceeded deepwater design wave. The reliability index and several parameters in the wave pressure formula are inter- related to find out the effects of extreme wave exceeded design wave on the sliding failure of vertical monolithic caisson. The sliding failure of caisson seems to be largely increased as the heights and periods of extreme waves exceeded design wave increase, also depends directly on the water depth in front of the composite breakwaters. From the numerical simulations carried out with several kinds of extreme waves exceeded design wave which are assumed to be occurred during the service periods of breakwater, it is found that the effects of the wave height on the sliding failure of caisson may be more dominant than those of wave periods and angles of wave incidence.

  • PDF

Calibration of Load and Resistance Factors for Breakwater Foundation Design. Application on Different Types of Superstructures (방파제 기초설계를 위한 하중저항계수의 보정(다른 형식의 상부구조 적용))

  • Huh, Jungwon;Doan, Nhu Son;Mac, Van Ha;Dang, Van Phu;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.287-292
    • /
    • 2021
  • Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.

Uncertainty Analysis of Wave Forces on Upright Sections of Composite Breakwaters (혼성제 직립벽에 작용하는 파력의 불확실성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.258-264
    • /
    • 2011
  • A MCS technique is represented to stochastically analyze the uncertainties of wave forces exerted on the upright sections of composite breakwaters. A stochastical models for horizontal and uplift wave forces can be straightforwardly formulated as a function of the probabilistic characteristics of maximum wave height. Under the assumption of wave forces followed by extreme distribution, the behaviors of relative wave forces to Goda's wave forces are studied by the MCS technique. Double-truncated normal distribution is applied to take the effects of uncertainties of scale and shape parameters of extreme distribution into account properly. Averages and variances of relative wave forces are quantitatively calculated with respect to the exceedance probabilities of maximum design wave height. It is found that the averages of relative wave forces may be decreased consistently with the increases of the exceedance probabilities. In particular, the averages on uplift wave force are evaluated slightly larger than those on horizontal wave force, but the variations of coefficient of the former are adversely smaller than those of the latter. It means that the uncertainties of uplift wave forces are smaller than those of horizontal wave forces in the same condition of the exceedance probabilities. Therefore, the present results could be useful to the reliability based-design method that require the statistical properties about the uncertainties of wave forces.

Determination of cross section of composite breakwaters with multiple failure modes and system reliability analysis (다중 파괴모드에 의한 혼성제 케이슨의 단면 산정 및 제체에 대한 시스템 신뢰성 해석)

  • Lee, Cheol-Eung;Kim, Sang-Ug;Park, Dong-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.827-837
    • /
    • 2018
  • The stabilities of sliding and overturning of caisson and bearing capacity of mound against eccentric and inclined loads, which possibly happen to a composite caisson breakwaters, have been analyzed by using the technique of multiple failure modes. In deterministic approach, mathematical functions have been first derived from the ultimate limit state equations. Using those functions, the minimum cross section of caisson can straightforwardly be evaluated. By taking a look into some various deterministic analyses, it has been found that the conflict between failure modes can be occurred, such that the stability of bearing capacity of mound decreased as the stability of sliding increased. Therefore, the multiple failure modes for the composite caisson breakwaters should be taken into account simultaneously even in the process of deterministically evaluating the design cross section of caisson. Meanwhile, the reliability analyses on multiple failure modes have been implemented to the cross section determined by the sliding failure mode. It has been shown that the system failure probabilities of the composite breakwater are very behaved differently according to the variation of incident waves. The failure probabilities of system tend also to increase as the crest freeboards of caisson are heightening. The similar behaviors are taken place in cases that the water depths above mound are deepening. Finally, the results of the first-order modal are quite coincided with those of the second-order modal in all conditions of numerical tests performed in this paper. However, the second-order modal have had higher accuracy than the first-order modal. This is mainly due to that some correlations between failure modes can be properly incorporated in the second-order modal. Nevertheless, the first-order modal can also be easily used only when one of failure probabilities among multiple failure modes is extremely larger than others.

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.

Comparative analysis of caisson sections of composite breakwaters evaluated by Level I reliability-based design method (Level I 신뢰성 기반 설계법에 의해 산정된 혼성제 케이슨 단면의 비교 분석)

  • Lee, Cheol-Eung;Park, Dong Heon;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.543-554
    • /
    • 2018
  • A methodology has been presented for evaluating the partial safety factors on the sliding failure mode of vertical caissons of composite breakwaters and for determining the cross sections of those by Level I reliability-based design method. Especially, a mathematical model has been suggested for the sake of a consistency of code format as well as convenience of application in practical design, for which the uncertainties associated with buoyancy and its own weight can be taken into account straightforwardly. Furthermore, design criteria equation has been derived by considering accurately the effect of uplift pressure, so that the cross sections of caissons can be assessed which must be safe against the sliding failure. It has been found that cross sections estimated from partial safety factors proposed in this paper are in very good agreement with the results of Level II AFDA and Level III MCS under the same target probability of failure. However, partial safety factors of the Technical Standards and Commentaries for Port and Harbour Facilities in Japan and Coastal Engineering Manual in USA tend to estimate much bigger or smaller cross sections in comparison to the present results. Finally, many reliability re-analyses have been performed in order to conform whether the stability level of cross section estimated by Level I reliability-based design method is satisfied with the target probability of failure of partial safety factors or not.