• 제목/요약/키워드: component wear test

검색결과 53건 처리시간 0.026초

TRIP1180 판재의 냉간 스탬핑공정에서 금형강의 경도 특성에 따른 내마모성 평가 (Quantitative Evaluation of Wear Resistance of Stamping Tool with Respect to Hardness of Tool Materials in Cold Stamping of TRIP1180 Steel Sheets)

  • 방준호;배기현;송정한;김홍기;이명규
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.129-135
    • /
    • 2022
  • The purpose of this study was to quantitatively evaluate the influence of hardness of tool materials on wear resistance in the sheet metal forming process. Punches used in the wear test were made of STD-11 and K340 tool material, and the tempering temperature was set to 530℃ and 500℃, respectively, to control the hardness of the tool materials. The punches mimic the shape of stamping tool of automotive body component to reflect its plastic deformation, and are designed to concentrate wear on the curvature region of punches. Progressive die and coil sheet were used to save time, cost, and raw sheet materials. By quantitatively measuring the wear depth of the punches, the wear behavior and mechanism of the punches were investigated, and characteristics of hardness and wear resistance according to tool materials and tempering temperatures were evaluated. Testing results indicate that the punch made of K340 tool steel with higher hardness had better wear resistance than that of STD-11 tool steel, and the hardness and wear resistance of tool steel were significantly impacted by the tempering temperature.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

DLC 코팅된 SACM645 소재의 마모 특성 (Wear Property of SACM645 Material with DLC Coating)

  • 김남석;남기우;박종남;안석환;김현수
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.76-80
    • /
    • 2010
  • Oil hydraulic piston pumps are being extensively used around the world, because of their simple design, light weight, effective cost, etc. An oil hydraulic pump is likely to have the serious problems of high leakage, friction, and low energy efficiency after a long period of use. In an oil hydraulic piston pump, the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this study, the wear property of the SACM645 material with DLC coating used for a hydraulic piston pump was determined by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, five different types of specimens were prepared. The maximum tensile strengths of the QT and QT Nitration specimens had similar values of about 800 MPa, but the strains indicated a big difference. In a wear test, the wear characteristic of the DLC coating specimen was shown to be excellent. The QT, QT + IH, QT + Nitration, and matirx specimen showed similar wear characteristics. In the case of a dry condition without oil, the DLC coating specimen had good wear resistance, with no wear shown.

Incorporating Station Related Aging Failures in Bulk System Reliability Analysis

  • Billinton Roy;Yang Hua
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.322-330
    • /
    • 2005
  • This paper proposes methods to incorporate station related aging failures in composite system reliability assessment. Aging failures of station components, such as circuit breakers and bus bars, are a major concern in composite power system planning and operation as an increasing number of station components approach the wear-out phase. This paper presents probabilistic models for circuit breakers involving aging failures and relevant evaluation techniques to examine the effects of station related aging outages. The technique developed to incorporate station related aging failures are illustrated by application to a small composite test system. The paper illustrates the effects of circuit breaker aging outages on bulk system reliability evaluation and examines the relative effects of variations in component age. System sensitivity analysis is illustrated by varying selected component parameters. The results show the implications of including component aging failure considerations in the overall analysis of a composite system.

UNSM 기술을 이용한 초경의 기계적 특성변화 (Changes in Mechanical Properties of WC-Co by Ultrasonic Nanocrystal Surface Modification Technique)

  • 이승철;김준형;김학두;최갑수;아마노프 아웨즈한;편영식
    • Tribology and Lubricants
    • /
    • 제31권4호
    • /
    • pp.157-162
    • /
    • 2015
  • In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique is applied to tungsten carbide-cobalt (WC-Co) to extend the service life of carbide parts used in press mold. The UNSM technique modifies the structure, reduces the surface roughness, increases the surface hardness, induces the compressive residual stress, and increases the wear resistance of materials by introducing severe plastic deformation. The surface roughness, hardness, and compressive residual stress of WC after UNSM treatment improve by about 42, 10, and 71%, respectively. A wear test under dry conditions is used to assess the effectiveness of the UNSM technique on the friction and wear behavior of WC. The UNSM technique is found to reduce the WC friction coefficient by approximately 21% and enhance the wear resistance by approximately 85%. The improved friction and wear behavior of WC may be mainly attributed to the increased hardness and compressive residual stress. Moreover, the WC specimen is treated by UNSM technique using three different WC, silicon nitride (Si3N4) and stainless steel (STS304) balls. The surface treated by WC balls shows the highest hardness when compared with treatment by stainless steel and silicon nitride balls. According to the obtained results, the UNSM technique is believed to increase the durability of the carbide component by improving the friction and wear behavior.

Development of STI/AOT Optimization Methodology and an Application to the AFWPs with Adverse Effects

  • You, Young-Woo;Yang, Hui-Chang;Chung, Chang-Hyun;Moosung Jae
    • Nuclear Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.211-217
    • /
    • 1997
  • Adverse effects caused by the surveillance test for the components of nuclear power plant involve plant transients, unnecessary wear, burden on licensee's time, and the radiation exposure to personnel along with the characteristics of each component. The optimization methodology of STI and AOT has been developed and applied to AFWPs of a reference plant. The approach proposed in this paper consist of the resole in minimal mean unavailability of the two-out-of-four system with adverse effects are analytically calculated for the example system. The surveillance testing strategy are given by the sequential test, the staggered test and the train staggered test which is a mined test scheme. In the system level, the sensitivity analyses for the STI and AOT, are performed for the measure of the system unavailability of the top event in the fault tree developed for the example system. This methodology may contribute to establishing the basis for the risk-based regulations.

  • PDF

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

틸팅차량용 제동 디스크의 트라이볼로지 특성 연구 (Tribological Characteristics of proposed brake disk for Tilting train)

  • 박경식;강성웅;조정환;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.491-497
    • /
    • 2005
  • Brake system is indispensible functional part to the transportation machines such as railroad cars, and all of industrial machines. It is mechanical element to stop the movement or slow the speed, transforming kinetic energy of motion object into thermal energy through solid friction. According that recently the railroad cars have become high-speed, the technique in braking domain to secure the overall braking effort is making rapid progress. In particular, material development and manufacturing process are so important to secure friction performance, which is the core in braking performance of mechanical brake units. Wear of brake disk could mainly result in the diminishment of its life span due to thermal cracking, so the endurance against high temperature is required. On the other hand, in this case, the problem is that the side wear of pad, relative material is slightly increased because of enlargement of plastic deformation. It is necessary, therefore, to develop a disk material that will be used in the Tilting System mechanical brake units. The purpose of this paper is to make a study prior to developing brake disk of Tilting Train travelling at 200km/h and to propose the component of brake disk. Accordingly, I will conduct sufficient researches on technical documents of brake disk, that are basic documentations, analyze an impact on components, and further, considering braking degree of train, study for the basic proposal on brake disk's component of the train travelling at 200km/h, which has relatively minor influence of heat stress and maintains the friction. In this respect, I would like to investigate friction characteristics between disk and relative friction material via Test on some possible test segments, analyze and propose friction performance, temperature impact and so forth coming from the contact with pad, relative material to demonstrate the friction characteristics.

  • PDF

타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구 (A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance)

  • 강태우;김혁중
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.561-568
    • /
    • 2021
  • 본 연구에서는 타이어 마모성능에 따른 타이어 마모입자 생성량 및 도로변 미세먼지 물질로써 타이어 소재와 도로 포장체 구성 성분의 정량화 분석을 위한 기초적 연구를 수행하였다. 이에, 타이어 트레드 부위 고무의 가황제/가황촉진제의 사용비를 달리하여 고무배합물을 제조하였다. 제조된 고무배합물의 물성 평가 결과 가황제/가황촉진제의 사용비가 증가할수록 가교밀도는 감소하여 마모성능이 불리한 조건임을 확인하였다. 밀폐된 실내 마모시험기에서도 가교밀도가 감소할수록 타이어 마모입자 생성량은 증가하였고, 손실량 100% 대비 84~86%의 타이어 마모입자를 포집할 수 있었다. 타이어 마모입자 중, 96.4~97.7% 분산, 2.3~3.6% 비산되는 것으로 평가되었다. 포집된 타이어 마모입자의 화학분석 결과, 타이어의 마모성능에 따라 타이어 마모입자 내 타이어와 도로 구성 성분 비율(63 : 37 → 75 : 25)이 변화됨을 확인 할 수 있었다. 본 연구에서는 타이어 마모성능에 따라 타이어 마모입자 발생에 대한 영향성을 관찰하기 위하여 실제 도로 현장의 조건 대비 가혹한 실내 마모환경으로부터 실험을 수행하였다. 이에 타이어 마모입자 발생이 도로 포장체 성분보다 더 높은 함량으로 분석되었다. 추후 실제 도로 환경에서 완제품 타이어와 실제 차량을 이용하여 자동차 도로변 미세먼지 저감을 위한 실증화 연구 방법을 도출할 계획이다.

Ni 계 초내열합금의 PTA 오버레이 층 특성에 관한 연구 (A Study on the Characteristics of the Ni base Super Alloy Overlay Layer by Plasma Transferred Arc (PTA) Method)

  • 김영식;최영국;이광렬
    • Journal of Welding and Joining
    • /
    • 제24권3호
    • /
    • pp.49-54
    • /
    • 2006
  • The Plasma Transferred Arc (PTA) overlaying method is lately introduced as one of the most useful surface modification method of the engine component. In this paper, the characteristics of the Co-base and Ni-base super alloy overlay layers by PTA method were investigated through the metallurgical, abrasive and cavitation erosion test. Experimental results showed that the abrasive wear resistance of the Co-base Stellite 6 overlayer was the most superior and followed in order of Nimonic 80A, Inconel 625 and Inconel 718. However, the cavitation erosion characteristic of the Stellite 6 overlayer was the most inferior and it was better in order of Inconel 625, Inconel 718 and Nimonic 80A.