• Title/Summary/Keyword: component protein

Search Result 1,190, Processing Time 0.037 seconds

Chemical composition and Stabilities of Invertase from Korean Ginseng, Panax ginseng (고려인삼(Panax RiwenR) Invertase의 화학조성과 안정성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 1990
  • The chemical composition and stabilities of the purified ginseng invertase were investigated. The purified enzyme was found to be a glycoprotein composed of 80.2% protein and 19.7% total sugar. The protein component of the enzyme was composed of acidic amino acid (9.3%), basic amino acid (48.9%), nonpolar amino acid (21.4%), polar amino acid (20.4%) and 6.1% S-containing amino acid. It showed especially high contents of histidine and serine. The enzyme was inactivated almost completely by the treatment with some proteases (papain, pepsin. trypsin, pancreatin and microbial alkaline pretense) and protein denatllrants (8M urea and 6M guanidine-HC1), bolt not with glyrosidase (${\alpha}$-amylase, ${\beta}$-amylase. glcoamylese and cellullase). btonosaccharides sllch as glilrose, fructose, galactose and mannose did not exert any influence on the enzyme activity. The activity of the enzyme was inhibited by Ag+, Mn2+, Hg2+, Zn2+ and Al3+, whereas Ca2+, Mg2+, Ba2+ and Fe3+ gave rather activating effects on the enzyme activity. The enzyme was relatively stable in the VH range of VH 6 and 8, and at the temperatures below 35$^{\circ}C$.

  • PDF

An antitumor component of laetiporus sulphureus and its immunostimulating activity

  • Kang, Chang-Yuil;Lee, Chong-Ock;Chung, Kyeong-Soo;Choi, Eung-Chil;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.39-43
    • /
    • 1982
  • A protein-polysaccharide fraction was prepared from the carpophores of Laetiporus sulphureus. This fraction suppressed growth of sarcoma 180 in A-strain mice when administered i. p. To investigate the mechanism of antitumor action of this fraction, plaque assay was conducted by administrating i. p. to the mise at a dose level of 50mg/kg for five days. Ten days later, the mice were immunized with 1 * 10$^{7}$ sheep red blooc cells. The number of hemolytic plaque forming cells was significantly greater than that of the control mice. Three monosaccharides and fifteen amino acids were identified in the protein-polysaccharide fraction.

  • PDF

Heavy Metal Detection and Removal in Artificial Wastewater Using Two-Component System Based Recombinant Bacteria (Two-component System 기반 재조합균을 이용한 인공폐수에서의 중금속 인지 및 제거)

  • Ravikumar, Sambandam;Hong, Soon-Ho;Yoo, Ik-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.187-191
    • /
    • 2012
  • Two-component system (TCS)-based bacterial zinc and copper biosensors, in which green fluorescent protein (GFP) is expressed under the control of zraP and cusC promoter in ZraS/R and CusS/R TCS, were evaluated in artificial wastewater. Bacterial biosensors developed in this study efficiently expressed GFP by the recognition of $Zn^{2+}$ and $Cu^{2+}$ in artificial wastewater. Secondly, TCS-based zinc and copper removing bacteria with the peptide displayed on cell surface were examined in artificial wastewater. Zinc and copper removing bacteria expressed the peptide as a fusion protein such as OmpC-ZBP (zinc binding peptide) and OmpC-CBP (copper binding peptide) on the cell surface when sensing exogenous $Zn^{2+}$ and $Cu^{2+}$ through ZraS/R and CusS/R TCS. The recombinant cell expressing metal-adsorbing peptide could efficiently remove copper and zinc (15 and 18 mg/g dry cell weight, respectively) in artificial wastewater. Therefore, it was demonstrated that the TCS-based recombinant cell for the recognition or removal of heavy metal functions well in artificial wastewater environment.

Separation of Follicular Fluid Components Stimulating Sperm Migration with Chromatographic Paper, $=mu$RPC and Superose Columns (Chromatography용 Paper, $\mu$RPC Column 및 Superose Column을 이용한 정자의 이동을 자극하는 난포액 성분의 분리)

  • 박영식
    • Journal of Embryo Transfer
    • /
    • v.13 no.3
    • /
    • pp.301-312
    • /
    • 1998
  • To efficiently separate a protein stimulating sperm swim-up migration and movement from follicular proteins, the effect of paper chromatography and liquid chromatography with reverse phase column and superose column on protein separation was examined. And the results obtained were as follows; 1. The band component that was separated with paper chromatography stimulated sperm migration and movement depending on its additional levels. Especially, band I component significantly increased sperm migration. But, all components of bands 1, 2 and 3 showed lower sperm migration and movement, compared to follicular fluid at the same additional level. 2. Among the components separated from follicular protein of 2~5mm follicles with reverse phase column ($\mu$RPC), components at retention time (RT) of 3.33, 7.00, 13.87, and 16.6A minutes stimulated sperm migration within a limited range. 3. All components separated from follicular protein of 10mm follicles with $\mu$RPC column didn't stimulate sperm migration and movement. 4. Among the components separated from follicular protein of 2~5m follicles with superose column, components at retention volume (RV) of 1.35 and 0.82 ml significantly stimulated sperm migration and movement. In conclusion, protein components stimulating sperm migration and movement were efficiently separated with superose column in Smart system. Especially, components of RV 1.35 and RV0.82 stimulated sperm swim-up separation.

  • PDF

Active Component of Fatsia japonica Enhances the Transduction Efficiency of Tat-SOD Fusion Protein both In Vitro and In Vivo

  • Lee, Sun-Hwa;Kim, So-Young;Kim, Dae-Won;Jang, Sang-Ho;Lim, Soon-Sung;Kwon, Hyung-Joo;Kang, Tae-Cheon;Won, Moo-Ho;Kang, Il-Jun;Lee, Kil-Soo;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1613-1619
    • /
    • 2008
  • It has been reported that Tat-SOD can be directly transduced into mammalian cells and skin and acts as a potential therapeutic protein in various diseases. To isolate the compound that can enhance the transduction efficiency of Tat-SOD, we screened a number of natural products. 3-O-[$\beta$-D-Glucopyranosyl(1$\rightarrow$4)-$\alpha$-L-arabinopyranosyll-hederagenin (OGAH) was identified as an active component of Fatsia japonica and is known as triterpenoid glycosides (hederagenin saponins). OGAH enhanced the transduction efficiencies of Tat-SOD into HeLa cells and mice skin. The enzymatic activities in the presence of OGAH were markedly increased in vitro and in vivo when compared with the controls. Although the mechanism is not fully understood, we suggest that OGAH, the active component of Fatsia japonica, might change the conformation of the membrane structure and it may be useful as an ingredient in anti-aging cosmetics or as a stimulator of therapeutic proteins that can be used in various disorders related to reactive oxygen species (ROS).

Phosphorylation as a Signal Transduction Pathway Related with N-channel Inactivation in Rat Sympathetic Neurons (N형 칼슘통로 비활성화와 연계된 세포 신호전달 체계로서의 인산화과정)

  • Lim Wonil;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • In N-type $Ca^{2+}$ channels, the mechanism of inactivation - decline of inward current during a depolarizing voltage step- is still controversial between voltage-dependent inactivation and $Ca^{2+}$ -dependent inactivation. In the previous paper we demonstrated that fast component of inactivation of N-type calcium channels does not involve classic $Ca^{2+}$ -dependent mechanism and the slowly inactivating component could result from a $Ca^{2+}$ -dependent process. However, there should be signal transduction pathway which enhances inactivation no matter what the inactivation mechanism is. We have investigated the effect of phosphorylation on calcium channels of rat sympathetic neurons. Intracellular dialysis with the phosphatase inhibitors okadaic acid markedly enhanced the inactivation. The rapidly inactivating component is N-type calcium current, which is blocked by $\omega$-conotoxin GVIA. Staurosporine, a nonselective protein kinase inhibitor, prevented the action of okadaic acid, suggesting that protein phosphorylation is involved. More specifically lavendustin C, inhibitor of CaM kinase II, prevented the action of okadaic acid, suggesting that calmodulin dependent pathway is involved in inactivation process. It is not certain to this point whether phosphorylation process is inactivation itself. Molecular biological research regarding binding site should be followed to address the question of how the divalent cation binding site is related to phoshorylation process.

  • PDF

The spy-gfp Operon Fusion in Salmonella Enteritidis and Salmonella Gallinarum Senses the Envelope Stress (Salmonella Enteritidis와 Salmonella Gallinarum의 세균막 스트레스를 인식하는 spy-gfp 오페론 융합)

  • Kang, Bo Gyeong;Bang, Iel Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.208-219
    • /
    • 2018
  • Emergence of drug resistant strains of Salmonella enterica threatens milk processing and related dairy industries, thereby increasing the need for development of new anti-bacterials. Developments of antibacterial drugs are largely aimed to target the bacterial envelope, but screening their efficacy on bacterial envelope is laborious. This study presents a potential biosensor for envelope-specific stress in which a gfp reporter gene fused to spy gene encoding a periplasmic chaperone protein Spy (spheroplast protein y) that can sense envelope stress signals transduced by two major two-component signal transduction systems BaeSR and CpxAR in Salmonella enterica serovars Enteritidis and S. Gallinarum. Using spy-gfp operon fusions in S. Enterititis and S. Gallinarum, we found that spy transcription in both serovars was greatly induced when Salmonella cells were forming the spheroplast and were treated with ethanol or a membrane-disrupting antibiotic polymyxin B. These envelope stress-specific inductions of spy transcription were abrogated in mutant Salmonella lacking either BaeR or CpxR. Results illustrate that induction of Spy expression can be efficiently triggered by two-component signal transduction systems sensing envelope stress conditions, and thereby suggest that monitoring the spy transcription by spy-gfp operon fusions would be helpful to determine if developing antimicrobials can damage envelopes of S. Enteritidis and S. Gallinarum.

Expression of PACT and EIF2C2, Implicated in RNAi and MicroRNA Pathways, in Various Human Cell Lines

  • Lee, Yong-Sun;Jeon, Yesu;Park, Jong-Hoon;Hwang, Deog-Su;Dutta, Anindya
    • Animal cells and systems
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2004
  • MicroRNA and siRNA (small interfering RNA), representative members of small RNA, exert their effects on target gene expression through association with protein complexes called miRNP (microRNA associated ribonucleoproteins) and RISC (RNA induced silencing complex), respectively. Although the protein complexes are yet to be fully characterized, human EIF2C2 protein has been identified as a component of both miRNP and RISC. In this report, we raised antiserum against EIF2C2 in order to begin understanding the protein complexes. An immunoblot result indicates that EIF2C2 protein is ubiquitously expressed in a variety of cell lines from human and mouse. EIF2C2 protein exists in both cellular compartments, as indicated by an immunoblot assay with a nuclear extract and a cytosolic fraction (S100 fraction) from HeLa S3 lysate. Depletion of EIF2C1 or EIF2C2 protein resulted in a decrease of microRNA, suggesting a possible role of these proteins in microRNA stability or biogenesis. We also prepared antiserum against dsRNA binding protein PACT, whose homologs in C. elegans and Drosophila are known to have a role in the RNAi (RNA interference) pathway. The expression of PACT protein was also observed in a wide range of cell lines.

Effects of Dietary Proteins and Inositol Hexaphosphate on the Preneoplastic Lesions and Antioxidant Enzymes of Hepatocellular Carcinogenesis in Rats (식이 단백질의 종류 및 Inositol Hexaphosphate가 간세포 암화과정에서 전암성 병변의 지표 및 항산화 효소계에 미치는 영향)

  • 김현덕;최혜미
    • Korean Journal of Community Nutrition
    • /
    • v.4 no.2
    • /
    • pp.239-247
    • /
    • 1999
  • Six-week-old Sprague Dawley rats were fed the diets of 20% casein or soy protein. Two weeks after the feeding, hepatocellular chemical carcinogenesis was initiated by diethylnitrosamine(DEN), and promoted by the diet containing 0.01% 2-acetylamino-fluorene(AAF) and two-thirds partial hepatectomy(PH). The animals were sacrificed at 8 weeks after the DEN injection. The area of placetal glutathione S-trnasferase(GST-P) positive foci, the activities of several enzymes in cellualr antioxidant enzyme systems and glucose 6-phosphatase were determined to investigate the mechanism of the anticarcinogenic effect by the dietary proteins. In another set of experiments, the drinking water of rats fed casein was supplemented with 1.5% inositol hexaphosphate(InsP6) to elucidate whether it has the comparable anticancer action of soy protein. The area and number of GST-P positive foci in the soy protein group were significantly(p<0.05) lower than those inthe casein group. The livers of rats fed casein showed moderate fattydegeneration and larger hyperplastic nodules than those of rats fed soy protein. In another set of experiments, the area and number of GST-P positive foci in the rats fed casein supplemented with InsP6 were not significantly different from those in the rats fed casein or soy protein. The lipid peroxidation of rats fed different protein sources showed no significant difference. Glutathione S-transferase(GST) activities were increased significantly(p<0.05) by carcinogen treatment in all dietary groups. Glucose 6-phosphatase(G6Pase) activities were decreased by carcinogen treatment, and hence showed a reverse relationship(r=-0.695, p<0.01) to the GST-P positive foci. Therefore, the activities in the rats fed casein were lower than those in the rats fed soy protein. These results suggest that the soy protein seems to be more anti-carcinogenic than casein by decreasing the preneoplastic lesion and by increasing the membrane stability but inositol hexaphosphate, a component of soy protein, may not be protective against hepatocarcinogenesis.

  • PDF

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.