DOI QR코드

DOI QR Code

Heavy Metal Detection and Removal in Artificial Wastewater Using Two-Component System Based Recombinant Bacteria

Two-component System 기반 재조합균을 이용한 인공폐수에서의 중금속 인지 및 제거

  • Ravikumar, Sambandam (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Hong, Soon-Ho (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • ;
  • 홍순호 (울산대학교 공과대학 화학공학부) ;
  • 유익근 (울산대학교 공과대학 화학공학부)
  • Received : 2012.08.29
  • Accepted : 2012.09.18
  • Published : 2012.09.30

Abstract

Two-component system (TCS)-based bacterial zinc and copper biosensors, in which green fluorescent protein (GFP) is expressed under the control of zraP and cusC promoter in ZraS/R and CusS/R TCS, were evaluated in artificial wastewater. Bacterial biosensors developed in this study efficiently expressed GFP by the recognition of $Zn^{2+}$ and $Cu^{2+}$ in artificial wastewater. Secondly, TCS-based zinc and copper removing bacteria with the peptide displayed on cell surface were examined in artificial wastewater. Zinc and copper removing bacteria expressed the peptide as a fusion protein such as OmpC-ZBP (zinc binding peptide) and OmpC-CBP (copper binding peptide) on the cell surface when sensing exogenous $Zn^{2+}$ and $Cu^{2+}$ through ZraS/R and CusS/R TCS. The recombinant cell expressing metal-adsorbing peptide could efficiently remove copper and zinc (15 and 18 mg/g dry cell weight, respectively) in artificial wastewater. Therefore, it was demonstrated that the TCS-based recombinant cell for the recognition or removal of heavy metal functions well in artificial wastewater environment.

Two component system (TCS)인 ZraS/R 및 CusS/R의 zraP와 cusC 유전자의 프로모터에 의해 green fluorescent protein (GFP)이 발현되도록 제작된 박테리아 바이오센서의 성능을 인공폐수에서 평가하였다. 제작된 박테리아 바이오센서는 실제 폐수를 모사한 인공폐수에서도 시료 중의 $Zn^{2+}$$Cu^{2+}$를 인지하여 GFP를 효율적으로 발현시키는 것을 확인할 수 있었다. 두 번째는 세포 표면에 금속 친화성 펩타이드가 표현되도록 제작된 구리 및 아연 제거 박테리아를 인공폐수 조건에서 평가하였다. 제작된 박테리아는 각각 ZraS/R 및 CusS/R TCS에 의해 주변의 $Zn^{2+}$$Cu^{2+}$를 인지하여 세포 표면에 OmpC-ZBP와 OmpC-CBP 융합 단백질을 발현시키는 시스템이다. 실험을 통해 표면에 금속 흡착 펩타이드가 발현된 재조합 균은 인공폐수 조건에서도 효과적으로 구리 및 아연을 흡착시키는 것을 확인하였다. 따라서 본 연구에서 개발된 TCS 기반 재조합 균은 인공폐수 조건에서 중금속의 인지 및 제거 기능이 효과적으로 작동하는 것이 확인되었다.

Keywords

References

  1. Bae, W., Wu, C.H., Kostal, J., Mulchandani, A., and Chen, W. 2003. Enhanced mercury biosorption by bacterial cells with surfacedisplayed MerR. Appl. Environ. Microbiol. 69, 3176-3180. https://doi.org/10.1128/AEM.69.6.3176-3180.2003
  2. Behera, S.K., Rene, E.R., and Murthy, D.V.S. 2008. Effect of hydraulic retention time and initial nitrate concentration on the performance of an up-flow anoxic bioreactor: A factorial design study. Indian Chem. Eng. 50, 27-33.
  3. Biran, I., Babai, R., Levcov, K., Rishpon, J., and Ron, E.Z. 2000. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ. Microbiol. 2, 285-290. https://doi.org/10.1046/j.1462-2920.2000.00103.x
  4. Falchuk, K.H., Hilt, K.L., and Vallee, B.L. 1998. Determination of zinc in biological samples by atomic absorption spectrometry. Method Enzymol. 158, 422-434.
  5. Harvey, B.R., Georgiou, G., Hayhurst, A., Jeong, K.J., Iverson, B.L., and Rogers, G.K. 2004. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc. Natl. Acad. Sci. USA 101, 9193-9198. https://doi.org/10.1073/pnas.0400187101
  6. Ivask, A., Hakkila, K., and Virta, M. 2001. Detection of organomercurials with sensor bacteria. Anal. Chem. 73, 5168-5171. https://doi.org/10.1021/ac010550v
  7. Lee, J-S., Shin, K-S., Pan, J-G., and Kom, C-J. 2000. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat. Biotechnol. 18, 645-648. https://doi.org/10.1038/76494
  8. Leonhartsberger, S., Huber, A., Lottspeich, F., and Bock, A. 2001. The hydH/G genes from Escherichia coli code for a 아연 and lead responsive two-component regulatory system. J. Mol. Biol. 307, 93-105. https://doi.org/10.1006/jmbi.2000.4451
  9. Mascher, T., Helmann, J.D., and Unden, G. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70, 910-938. https://doi.org/10.1128/MMBR.00020-06
  10. Munson, G.P., Lam, D.L., Outten, F.W., and O'Halloran, T.V. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182, 5864-5871. https://doi.org/10.1128/JB.182.20.5864-5871.2000
  11. Ravikumar, S., Pham, V.D., Lee, S.H., Yoo, I.K., and Hong, S.H. 2012. Modification of CusSR bacterial two-component systems by the introduction of an inducible positive feedback loop. J. Ind. Microbiol. Biotechnol. 39, 861-868. https://doi.org/10.1007/s10295-012-1096-y
  12. Ravikumar, S., Yoo, I.K., Lee, S.Y., and Hong, S.H. 2011a. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioproc. Biosyst. Eng. 34, 1119-1126. https://doi.org/10.1007/s00449-011-0562-7
  13. avikumar, S., Yoo, I.K., Lee, S.Y., and Hong, S.H. 2011b. Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl. Biochem. Biotechnol. 165, 1674-1681. https://doi.org/10.1007/s12010-011-9386-9
  14. Sagi, E., Hever, N., Rosen, R., Bartolome, A.J., Premkumar, J.R., Ulber, R., Lev, O., Scheper, T., and Belkin, S. 2003. Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sensor Actuat. B-Chem. 90, 2-8. https://doi.org/10.1016/S0925-4005(03)00014-5
  15. Stock, A.M., Robinson, V.L., and Goudreau. P.N. 2000. Two-component signal transduction. Ann. Rev. Biochem. 69, 183-215. https://doi.org/10.1146/annurev.biochem.69.1.183
  16. Taschner, S., Meinke, A., von Gabain, A., and Boyd, A.P. 2002. Selection of peptide entry motifs by bacterial surface display. Biochem. J. 367, 393-402. https://doi.org/10.1042/BJ20020164
  17. Yong, Y.C. and Zhong, J.J. 2009. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal. Biosen. Bioelectron. 25, 41-47. https://doi.org/10.1016/j.bios.2009.06.010