• 제목/요약/키워드: component deformation

검색결과 349건 처리시간 0.022초

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

그루브 압축에 의한 알루미늄의 집합조직 (Texture Development by Groove Pressing in Aluminum)

  • 박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.206-209
    • /
    • 2000
  • Groove pressing which is analogous to groove rolling in the aspect of deformation mode was designed and influence of the uncommon shear deformation on the development of texture and R value was investigated. Texture developed by the groove pressing were measured as well as predicted. It was found out that the main component in the developed texture was {40。, 45。, 0。} in ODF which was regarded as a rotated Bs component and rarely observed in a plain rolling. The maximum R value was predicted to be 3.8 in 45。 direction which might be attributed to the new component.

  • PDF

소성가공 및 열처리가 기계적 성질에 미치는 영향에 관한 연구 (A study on the effect of plastic deformation and heat treatment on mechanical properties)

  • 제진수;김정민;강성수;이광오
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.283-286
    • /
    • 2005
  • Because CV Joint which is one of the component of automobile power train system communicates high power and performs power steering function, it requires high qualities such as high strength, high toughness and high fatigue resistance. This component undergoes a series of production processes such as forging, machining and heat treatment and required properties for this component depends on plastic deformation and heat treatment heavily. Therefore in this study, in order to these effects on mechanical properties due to plastic deformation and heat treatment we performed heat treatment following plastic deformation and then tensile test.

  • PDF

용접순서와 자중이 소조립 부재의 용접변형에 미치는 영향 (Effect of Welding Sequence and Self-Weight on Welding Deformation in Ship's Small Component Fabrication)

  • 박정웅;한명수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.601-606
    • /
    • 2005
  • Welding deformations are affected by various factors. This research investigates effects of welding sequence and self-weight on welding deformation. According to the results by equivalence load method, magnitude of welding deformation with self-weight is about twice one without self-weight on parallel weld path component. But welding deformation with the components used in this research are not affected by welding sequence

  • PDF

결정소성 유한요소법을 이용한 FCC 다결정 금속의 압연 집합조직 예측 (Prediction of Rolling Texture Evaolution in FCC Polycrystalline Metals Using Finite Element Method of Crystal Plasticity)

  • 박성준;조재형;한흥남;오규환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.313-319
    • /
    • 1999
  • The development of deformation texture in FCC polycystalline metals during rolling was simulated by the finite element analysis using a large-deformation, elaatic-plastic, rate-dependent polycrystalline model of crystal plasticity. Different plastic anisotropy due to different orientation of each crystal makes inhomogeneous deformation. Assuming plane strain compression condition, the simulation with a high rate sensitivity resulted in main component change from Dillamore at low rate sensitivity to Brass component.

  • PDF

평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용 (Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process)

  • 이창희;양동열;이용신
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the resent work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section exclusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

  • PDF

평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용 (Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process)

  • 이창희;양동열;이용신
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.724-730
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the present work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section extrusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

판류응력 및 점탄성을 고려한 플라스틱 부품의 후면형 예측 (Prediction of Post-Deformation for Plastic Component Considering Residual Stress and Viscoelasticity)

  • 문형일;김헌영;최철우;정갑식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.341-344
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But. using, transporting, and keeping of plastic component was happened post-deformation. As time goes by and temperature is changed, the post-deformation causes the problems of exterior design and performance. But, it is difficult to estimate the post-deformation by only thermal deformation analysis. Also, the estimation technique of the pest-deformation must be easily applied to product development and it should be reliable because development time of product is limited. In the paper. the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

비선형 대변형 유한요소법을 이용한 열가소성 고무부품의 밀봉성능 예측 (Sealing Performance Prediction of Thermoplastic Rubber Component using Non-linear Large Deformation F.E.M.)

  • 박선;이신영;강은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.669-673
    • /
    • 2001
  • The objective of this paper is to predict and evaluate the sealing performance of the thermoplastic rubber component in the proto-design stage. The large strain and large deformation properties of rubber are modeled by strain energy function and the related material constants are calculated from the test data. The viscoelastic property of the rubber is also considered using the coefficients in a Prony series representation of a viscoelastic modulus ken the compression stress relaxation test. The results show that the current design of cap mount system has 2-different stiffness caused by the cap-mount contact and the viscoelastic property of rubber plays an important role in time dependent deformation.

  • PDF

유연 구조물의 운동중 발생하는 진동의 해석 (Vibration Analysis of a Flexible Structure in a Motion)

  • 이신영
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1503-1509
    • /
    • 1994
  • An analysis method is suggested and experimentally studied in order to solve a vibration problem of a flexible structure while it is moving. In this method, substructure synthesis method, modal analysis method and Newmark's integral method were used. Total deformation of a structure was composed of quasistatic component and dynamic component. Rigid body modes were considered in calculation of dynamic component. Combining those two component, deformation behavior and a real structural model of a transfer feeder showed good agreements with computational results.