• Title/Summary/Keyword: compliant motion

Search Result 63, Processing Time 0.038 seconds

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Design of Compliant Hinge Joints inspired by Ligamentous Structure (인대 구조에 기인한 유연 경첩 관절의 설계)

  • Lee, Geon;Yoon, Dukchan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.237-244
    • /
    • 2019
  • This paper suggests novel types of joint mechanisms composed of elastic strings and rigid bodies. All of the human hinge joints have the articular capsule and a pair of collateral ligaments. These fibrous tissues make the joint compliant and stable. The proposed mechanism closely imitates the human hinge joint structure by using the concept of tensegrity. The resultant mechanism has several characteristics shown commonly from both the tensegrity structure and the human joint such as compliance, stability, lightweight, and non-contact between rigid bodies. In addition, the role and feature of the human hinge joints vary according to the origins of a pair of collateral ligaments. Likewise, the locations of two strings corresponding to a pair of collateral ligaments produce different function and motion of the proposed mechanism. It would be one of the advantages obtained from the proposed mechanism. How to make a joint mechanism with different features is also suggested in this paper.

An experimental study on compliant buoy mooring system in shallow water (천해역 유연부이 계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Hong, Seok-Won;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a compliant buoy mooring system of a floating cylindrical structure in shallow water depth is studied experimentally. The compliant buoy mooring system consists of four buoys, vertical mooring legs and horizontal mooring lines. A series of model test were carried out at KRISO ocean engineering basin for various mooring parameters; line length, pretension of mooring leg and mooring layouts and environmental conditions; regular and irregular waves combined with current and wind. The mooring line tensions and 6-DOF motions of the floating structure were measured using water-proof load cells and 3 CCD camera system. The results of a series of model tests were discussed on nonlinear motion behaviors of the floating structure and characterisitics of cumulative distributions of mooring line peak tensions.

  • PDF

Wall Shear Stress Between Compliant Plates Under Oscillatory Flow Conditions: Influence of Wall Motion, Impedance Phase Angle and Non-Newtonian Fluid (맥동유동하에 있는 유연성 있는 평판 사이의 벽면전단응력: 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choe, Ju-Hwan;Lee, Jong-Seon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2001
  • The present study investigates flow dynamics between two dimensional compliant plates under sinusoidal flow conditions in order to understand influence of wall motion, impedance phase angle (time delay between pressure and flow waveforms), and non-Newtonian fluid on wall shear stress using computational fluid dynamics. The results showed that wall motion induced additional terms in the streamwise velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. The trend of the changes was very different depending on the impedance phase angle. As the impedance phase angle was changed to more negative values, the mean wall shear stress decreased while the amplitude of wall shear stress increased. As the phase angle was reduced from 0°to -90°under $\pm$4% wall motion, the mean wall shear stress decreased by 12% and the amplitude of wall shear stress increased by 9%. Therefore, for hypertensive patients who have large negative phase angles, the ratio of amplitude and mean of the wall shear stress is raised resulting in a more vulnerable state to atherosclerosis according to the low and oscillatory shear stress theory. We also found that non-Newtonian characteristics of the blood protect atherosclerosis by decreasing the oscillatory shear index.

APPLICATION OF INVERSE DUNAMICS FOR HYBRID TRANSLATIONAL POSITION/FORCE CONTROL OF A FLEXIBLE ROBOT ARM

  • Sasaki, Minoru;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.595-599
    • /
    • 1989
  • A new simple method for controlling compliant motions of a flexible robot arm is presented. The method aims at controlling translational tip motion, force and moment by directly computing the base motion or torque. A numerical inversion of Laplace transform is used to obtain the results in the time domain. The results show the effectiveness of the method for the hybrid translational position/force control of a flexible robot arm.

  • PDF

Center of Mass Compliance Control of Humanoid Using Disturbance Observer (외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어)

  • Park, Gyeongjae;Kim, Myeong-Ju;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF

Wave induced motion of a triangular tension leg platforms in deep waters

  • Abou-Rayan, A.M.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 2013
  • Tension leg platforms (TLP's) are highly nonlinear due to large structural displacements and fluid motion-structure interaction. Therefore, the nonlinear dynamic response of TLP's under hydrodynamic wave loading is necessary to determine their deformations and dynamic characteristics. In this paper, a numerical study using modified Morison Equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between all degrees of freedom on the dynamic behavior of a TLP. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics was considered.

Hardware Implementation of GA HDTV Video Encoder Using Hierarchical Motion Estimation and Adaptive Quantization (계층적 움직임 추정 및 적응 양자화 기법을 사용한 GA HDTV 동영상 부호화기 개발에 관한 연구)

  • 임경원;최병선;조현덕;최정필;유한주;송병철;김성득;박현상;나종범
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.152-164
    • /
    • 1996
  • This paper describes the hardware architecture and implementation trade-offs of the Grand Alliance HDTV video encoder system. The implemented video encoder accepts video in 1125 line(30Hz) interlaced format, and produces a bit-stream compliant with the motion picture experts group version 2(MPEG-2) standards. The encoder processing includes large- area motion estimation and an advanced rate control mechanism. To keep the system complexity realizable, we adopt a fast hierarchical motion estimation method and developed its hardware architecture. Furthermore an adaptive perceptual quantization method is adopted to improve the perceptual quality. The developed system Is based on the 4-way parallel processing architecture and is implemented by using programmable IC, memory IC, and special-purpose processors such as DCT and motion estimation processors.

  • PDF