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ABSTRACT: A new simple method for controiling compliant motions of a flexible robot
arm is presented. The method aims at controlling translational tip motion, force and
noment by directly computing the base motion or torque. A numerical inversion of
Laplace transform is used to obtain the results in the time domain. The results show
the effectiveness of the method for the hybrid translational position/force control

of a flexible robot arn.

INTRODUCTION

Development of light weight and higher
performance robots for both commercial and space-
based applications requires the research of a
flexible robot manipulator. A lot of papers
concerning the positioning or vibratiom control of
a flexible robot arm have been published for
several years{1-6]. However most of these papers
concerned with the rotational notion of the
flexible arm and few dealt with translational
motion of the flexible arm. Also, inverse problenms
are important to robot control and programming,
since they allow one to find the appropriate
inputs necessary for producing the desired
outputs[7-8].

For some applications, such as assembly of
the mechanical parts or performing a machining
process, a robot arm is required to interact
compliantly with an environment. This sometines
necessitates the force control at the tip of robot
nanipulator. Research of rigid manipulator in this
area has been active for over a decade as
witnessed by the works of Whitney[91],
Salisbury[10], Raibert and Craigl1!], Roberts,
Paul, and Hillberry[12]. However, few research has
been done on the hybrid position/force control of
a flexible arm.

With this background in mind, the method
proposed here aims at controlling tip motion by
directly computing the base motion or torque,
which is necessarily applied at the base of the
link to achieve the desired trajectory, moment,
and force at the tip of the arm. A numerical
inversion of Laplace transform is used to obtain
the results in the tinme domain. The problen of
inverting the Laplace transform can often be
solved analytically by applying a partial fraction
expansion or an integration along some contour in
the complex plane. Sometimes, this method becomes
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too difficult or impossible to have the analytical
results. In that case numerical methods will be
necessary. The procedure used here is the
approximation of the exponential function in the
Bromwich integral. A simple and efficient
nunerical algorithm is applied to a particular
one-link flexible arm. The results show the
effectiveness of the method for the hybrid
position/force control of flexible robot arms.
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Figure 1 Flexible manipulator model.

FORHULATION AND ANALYSIS

Figure 1 shows a uniform arm of length 1 with
a payload mass at the tip of the arm. The base of
the arm is moved translationally by a DC motor.
The arm is subjected to a force and moment at the
tip. Here we define the flexural displacement of
the arm W(r,t) as W(r,t)=Vg(r,t)-Wy. In the case,
the equation of motion of the arm is given by
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where p is the mass density, W is the flexural
displacenent, A4 is the «cross-sectional area, I
is the moment of inertia of arm cross-section, t
is the time, E is the Young’s modulus, ¥y is
translatioral displacement and ¢ is the internal
damping coefficient. Boundary conditions of the
arn and the equilibrium equation of drive systen
are given by
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where Mp is the payload mass, My is the mass of

arn base, cg is the damping coefficient between
the base and rack, Jp; and Jy2 are the moment of
inertia of the pinion and shaft, €] and ¢ 7 are
the viscous friction coefficient, r| and rg are
the radius of pinion, Jp is the payload mass
noment of inertia, u(t) is the armature input
voltage, R is the resistance of the armature, F is
the desired end point force, M is the desired end
point moment, and K; and Ky are constants
related to the motor to~que and the back
electromotive force, respectively. Equation (1)
and (B8) can be solved by applying the method of
the Laplace transform with respect to t, defined
by

LN (r,t), ¥y (t),ult),F{t), M(t)]

(o]

= IOUJ(r,t),Hb(t),u(t).F(t),H(t)]exp('st)dt

=[W(r,s),¥h(s),uls),F(s),M(s)] (7
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LLLW(r,s),¥%p(s),u(s),F(s),H(s)]

{ +o0
=(2zi)°1 IC[U(r,s),Ub(s),u(s),F(s),H(s)]exp(st)ds

=[W(r,t),¥p(t),ult),F(L),H(t)]. (8)
Transforming equations (1)-(6) gives

E(1+cs) 1ddW/drd+ o AsZ(W+Wp)=0, (9)
W(0)=0, d¥(0)/dr=0, (10,11)
Jps(du(1)/dr) +E(1+cs) 1d2W (1) /dr2=H, (12)
MpsZ{W(1)+Wp} -E(1+cs) Id3% (1) /drd=F, (13)
HosZ{Wp+W(0) Y +cgs (W +H(0))

=-E(1+es) 1d34(0) /dr3+(K ; /Rr)uls)
~(Jp1/r124359/792) s Z{Hp+H(0))

(e 1/r12+ € 9/092-K ¢ Kp/Rr12)s{Np+H(0)) . (14)

Hereinafter, the following dimensional and non-
dimensional quantities are introduced:

Bl=-a2/(1+n . a)=- p AsZI4/EI (1+cs), W=W/1,
Wp=Wp/1, 1=r/1, ri=ri/1, rgsr/l, Jp=lp/ o AL3,
HoHo/ o AL, cgmes(p AIVED 172,
.T=(M012+Jm1/r12+.1m2/r22)/ o A13, aZ=p A14s2/E],
F=F12/E1, W=M1/EI,

1 c=c(p ALY/E)-1/2, Ki=K ; 1/EIRry,

€=cgt(e 1/r12+ ¢ 9/v92-K 1 Ky/R) /(0 ALZED V2. (15)
A general solution to equation (1) is
E(;)=Acos B;*rBsin ﬁ;ﬂlcosh ﬁ;+Dsinh B}-Fb (18)

A’
from the boundary

B, C and D are unknown constants determined
conditions. Substitution of

eq.(16) into equations (10)-(14) leads to
a]] a1z ai3||A "
ag] a2 az3||B| =|F
a3l a3z a33(|Dd Kju(s)

where

a11=jpa219 {cos B-coshB)
-(I+#nca) B2(sinB+sink B),

ajg=-JpalBsinf-(1+n.a) Bosh,



313=.Ypa ZBsinh B+(1+n ) B2cosh B,
azﬁipa 2(sin B -sinh B)
+(I+n ) B3(cos B +cosh B),
322=§pa26055 ~(1+n.e) BIsin B,
323:ipa2COSh B-(1+7.a)B3sinh B,
az1=-2l+n.a) B3,
agp=lalie a,
333=3a2+; .
Here we put a31=0, ag2=0, a33=l in eq.{(17) when
input is applied as a rotating angle. From eq.(16)

one has

V(r,s)=[A A(sin B r-sinh 81)

+Aglcos Br-1)+Ap(cosh Br-1)1/4 (13)
where
al] 212 213 K a2 an
A= \ agy az2 a3|, DBa=|F ag2 a3t
! a3] a3z a3} ! Kju(s) a32 a33 |
ajp X a13 jair a2 X
Ap=| ag1 F a3 |, Apzlagt az2 F
a3p Kju(s) a33 a31 a3y Kpuls)

Therefore we can get u(s) in the form
U(S)=[AW(1)'(ﬁ(a22333-a23331)+§(332331-312333)) X
(sin B -sinh B)-(W(agga3i-az1a33)+F (a11233-213a31))
X (cos 8 -1)‘(ﬁ(aglagz-azzam)+F(alza31-a32a11)) X
(cosh B -1)1/K1{(a1a23-231a22) X (sin B -sinh 8)
+(ag1a13-ag3all) X (cos B -D+(ay1a22-221312) X
(cosh f-1)}. (19)
THE CALCULATION OF INVERSION OF LAPLACE TRANSFORM
There have been two fairly general numerical

approaches to the problem of inverting the Laplace
transform. One is to expand the unknown function

as a series in a complete set of orthogonal -

functions. The other is expressed the Laplace
transform as a Fourier cosine transform whose
inverse is expressible as a Fourier cosine series.
The procedure we used here is the approximation of
the exponential function in the Bromwich integral.
The essential point of this method consists in the
approximation of the exponential function exp(s)
by
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Egc(s,a)=exp(a)/2cosh(a-s)

Lo o]
=(ed/2) Zj(-1)0/[s-a-j(n-0.5) x ]

n=-oo

zeS-¢"2ag384g 4305 .- (20)
We define a function for t>0
[ +ioo
foclt,a)={2x §) "1 [ F(s)Eec(st,a)ds (21)
{-io
On substituting (20) into (21), we have
foc(t,a)=f(t)-e 2af(3t)+e daf (5t)- --- (22)
and
foc(t,a)=(ed/t) (F +Fo+F3+ ---) (23)
where
Fp=(-DMIgF{[a+j(n-0.5) © 1/t} (24)

Equation (22) shows that the function fg.(t,a)
gives a good approximation when a>>] and will be
used in error estimation. On the other hand, (23)
can be used Lo compute the numerical value of the
inverse Laplace transform effectively. In
practice, we must truncate the infinite series in
(23) to some finite terms. Simple truncatioa,
however, results in a relatively large error and
is not realistic. In this respect, an effective
method using Euler transformation has been
developed. We transform (23) as follows

k_
fec(t,a)=(ed/t)(Z
n:

] oo
§n+2 gan/zn*l) (25)

n=

In practice, (25) is truncated to some finite
terms, so that it is more convenient to use the
expression

n n
T DOF /204 =(1/20% ) T AL Fren (26)
n=0 n=0
where the App are defined recursively by
u+l
27

Anp=l, Agn-1%App*( )
n
Thus we calculate the (1,n)th approximation by

1-1 n
feclB(t,a)=(ed/t) (zllvn+2-m-1 ngthn) (28)
n= n=
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Fig. 2 Desired tip trajectory
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Fig. 3 Desired tip force and moment

STMULATION RESULTS AND DISCUSSION

_ Here we consider the desired tip trajectory
Ws(l,s)=e'0'55(l-e'0-55)2/0.2553 as shown in
Figure 2. Figure 3 shows the desired tip moment
and force. This desired tip trajectory is based on
bang-bang torque, which is required for tinme
optimal control in the case of 1 single link rigid
robot arm. The results in tae time domain are
obtained through the application of the numerical
inversion of Laplace transform mentioned above.
Figure 4 is the calculated input torque when the
arn has the payload mass. Figure 5 is the
calculated base motiomn when the arm has the
payload mass. Figure 6 shows the calculated input
torque when F and M are zero. Figure 7 is the
calculated torque for ¥g(1,s}=0.0. Figure 8 is the
result for the calculated input torque with no
payload mass. Figure 9 shows the calculated input
torque when F and M are applied at t=1.0(seconds).
Figure 10 is the result when F and M are subjected
at t=1.5(seconds). Compared with Figure 4 and 5
the base motion input is more smooth than torque
input. As a matter of fact the base motion input
is more easy to control than the torque input. The
control input consists of the translational motion
factor and the moment and force factor. Thus the

positive torque ccaponent is greater than the
negative one. A delay of starting time of moment
and force shifts the positive torque conponent
toward the later region of t.
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CONCLUSIONS

A new method has been developed for the
hybrid position/force control of a flexible robot
arm. [t is based on the numerical inversion of
Laplace transform. Results obtained are

sunnarized as follows.

(1) The advantage of this method is that we need
not consider the mode numbers and the natural
frequencies of the system.

{(2) Comparing the input torque with the base
motion, the base motion has no higher modes waves.
Therefore, the base motion input is more easy to
control than the torque input.

(3) The proposed procedure has the effectiveness
for the hybrid position/force control of flexible
robot arms.
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