• Title/Summary/Keyword: compliance center

Search Result 457, Processing Time 0.036 seconds

A Study on Specifying Compliance Characteristics for Assembly Tasks Using Robot Hands: Two Dimensional Model (로봇 손을 이용한 조립 작업의 컴플라이언스 특성 설정에 관한 연구:2차원 모델)

  • Kim, Byoung-Ho;Oh, Sang-Rok;Yi, Byung-Ju;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1171-1177
    • /
    • 2001
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands. Through various assembly tasks, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. Also, we show that some of coupling stiffness elements in the operational space cannot be planned arbitrarily. As a result it is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

A Guideline for Specifying Compliance Characteristics of Two Dimensional Assembly Tasks using Robot Hands (로봇 손을 이용한 2차원 조립 작업의 컴플라이언스 특성 설정 기준)

  • 김병호;오상록;이병주;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.78-78
    • /
    • 2000
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands, To be specific, some of coupling stiffness elements cannot be planned arbitrary. Through T-type assembly task, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. It is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

An experimental study on adjusting mechanism of Remote Center Compliance for assembly robots with shear stress control of Elastomer Shear Pads(ESP) (ESP의 전단 변형을 이용한 원격 순응 중심 장치의 순응 중심 조절 방법에 관한 실험적 고찰)

  • Lee, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • In this paper, an experimental study is performed to adjust position of compliance center of Elastomer Shear Pad Remote Center Compliance (ESP RCC) device, which is used on precise peg in hole process. In the study, variation of the lateral/axial stiffness of the ESP is proposed as a control parameter to adjust the position of compliance center of the ESP RCC. The variation of the stiffness of the ESP is achieved by controlling the shear stress of the ESP. To control the shear stress of the ESP, position of top side of the ESP is changed while remaining bottom side of the ESP is fixed on the RCC plate. To evaluate effect of the proposed idea, stiffness variations of the ESP on various shear stresses are measured, and variation of the compliance center is measured with the ESP RCC that can control the position of compliance center by using the shear stress. The measured data shows unique characteristics that have not been shown in other types of ESP VRCCs.

Real-World Compliance of Surgical Treatment According to the Korean Gastric Cancer Guideline 2018: Evaluation From the Nationwide Survey Data 2019 in Korea

  • Sang Soo Eom;Sin Hye Park;Bang Wool Eom;Hong Man Yoon;Young-Woo Kim;Keun Won Ryu
    • Journal of Gastric Cancer
    • /
    • v.23 no.4
    • /
    • pp.535-548
    • /
    • 2023
  • Purpose: This study evaluated real-world compliance with surgical treatment according to Korea's gastric cancer treatment guidelines. Materials and Methods: The 2018 Korean Gastric Cancer Treatment Guidelines were evaluated using the 2019 national survey data for surgically treated gastric cancer based on postoperative pathological results in Korea. In addition, the changes in surgical treatments in 2019 were compared with those in the 2014 national survey data implemented before the publication of the guidelines in 2018. The compliance rate was evaluated according to the algorithm recommended in the 2018 Korean guidelines. Results: The overall compliance rates in 2019 were 83% for gastric resection extent, 87% for lymph node dissection, 100% for surgical approach, and 83% for adjuvant chemotherapy, similar to 2014. Among patients with pathologic stages IB, II, and III disease who underwent total gastrectomy, the incidence of splenectomy was 8.08%, a practice not recommended by the guidelines. The survey findings revealed that 48.66% of the patients who underwent gastrectomy had pathological stage IV disease, which was not recommended by the 2019 guidelines. Compared to that in 2014, the rate of gastrectomy in stage IV patients was 54.53% in 2014. Compliance rates were similar across all regions of Korea, except for gastrectomy in patients with stage IV disease. Conclusions: Real-world compliance with gastric cancer treatment guidelines was relatively high in Korea.

Development of a Variable Remote Center Compliance (VRCC) with Stiffness Adjusting Rods. (탄성 조절 막대를 이용한 가변형 원격 순응 중심 장치 개발에 관한 연구)

  • Lee, Sang-Cheo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.704-708
    • /
    • 2005
  • In this paper, a simple idea is proposed to change the compliance center of the Remote Center Compliance (RCC) by adjusting the elasticity of the Elastomer Shear Pad (ESP). To vary the elasticity of the ESP, a hole is made in the ESP along its stiffness axis, and a stiffness adjusting rod (SAR) is inserted into the hole. By adjusting the insertion depth of the rod, lateral stiffness of the ESP can be varied, and the compliance center of the VRCC can be controlled accordingly. To verify the effectiveness of the proposed idea, a prototype VRCC is designed and, the position of the compliance center with various lengths of the inserted rod are measured.

A Study on Infant Compliance According to the Types of Care and Multiple Attachments (타인양육 유형과 다중애착안정성 유형에 따른 영아의 순응성 연구)

  • Baek, Ji-Hye;Cho, Bok-Hee
    • Korean Journal of Child Studies
    • /
    • v.31 no.1
    • /
    • pp.147-162
    • /
    • 2010
  • The purpose of the present study was to investigate the effect of the types of care and multiple attachments on the issue of infant compliance. The subjects of this study were 52 infants (1-2 years old) and their caregivers (grandparents, baby sitters, daycare teachers) and their mothers. The results of this study are as follows : (1) The type of care and multiple attachments types affected infant compliance in relation to the mother. In the daycare center, the infants showed more signs of compliance than whilst in the care of the grandparents. Moreover, with the secure-secure, secure-insecure types, the infant showed more signs of compliance than with the insecure-secure, insecure-insecure types. (2) The types of care affected infant compliance in relation to the caregiver. In the daycare center, the infant showed more signs of compliance than in the care of both the grandparents or baby sitter. (3) Multiple attachment types were found to affect infant compliance in relation to strangers.

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Compliance Analysis for Effective handling of Peg-In/Out-Hole Tasks Using Robot Hands (로봇 손을 이용한 팩의 조립 및 분해 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.777-785
    • /
    • 2000
  • This paper provides a guideline for the determination of compliance characteristics and the proper location of the compliance center in typical peg-in-hole and peg-out-hole tasks using hands. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrarily. The given peg-in/out-hole tasks are classified into two contact styles. Then, we analyze concluded of the operational siffness matrix, which achieve the give peg-in/out-hole tasks effectively for each case. It is concluded that the location of the compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play ompliance on the peg and the coupling siffness element existing between the translational and the rotational direction play important roles for successful peg-in/out-hole tasks. The analytic results verified through simulations.

  • PDF

Study on Precison Assembly Macchanism Using Joint Compliances (관절 콤플라이언스를 활용한 정밀 조립형 메카니즘에 관한 연구)

  • 김동구;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.395-400
    • /
    • 1994
  • Most of Commercial Remote Center Compliance(RCC) devices have been designed using deformable structures. In this work, we propose another type of assembly devices which generate the compliance effects by attaching the compliances (or spring) at the joints of the given mechainsm. The compliance models are derived for a serial-type, parallel-type, and hybrid-type mechanisms, respectively. In particular, a planar three-degree of freedom parallel structure is shown to have RCC points at the center of the workspace for its symmetric configuratings.

  • PDF