• 제목/요약/키워드: complex summation

검색결과 26건 처리시간 0.024초

ANOTHER TRANSFORMATION OF THE GENERALIZED HYPERGEOMETRIC SERIES

  • Cho, Young-Joon;Lee, Keum-Sik;Seo, Tae-Young;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.81-87
    • /
    • 2000
  • Bose and Mitra obtained certain interesting tansformations of the generalized hypergeometric series by using some known summation formulas and employing suitable contour integrations in complex function theory. The authors aim at providing another transformation of the generalized hypergeometric series by making use of the technique as those of Bose and Mitra and a known summation formula, which Bose and Mitra did not use, for the Gaussian hypergeometric series.

  • PDF

1축 날개 조종형 고속회전 유도탄의 조정 특성 해석 (Analysis of control characteristics for high speed rolling guided missile with one axis steering fin)

  • 진정석;이재혁
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.102-107
    • /
    • 1996
  • It is difficult to analyze the high speed rolling missile with the generally used missile body fixed coordinates. In this study, we formulate the dynamic equations of the high speed rolling missile with the principal axis of inertia, and make the analytical model of one axis steering missile using pitch/yaw symmetry and complex summation method. With this model we analyze the control characteristics and propose the design considerations of high speed rolling missile with one axis control fin using PNG law in conjuntion with a seeker signal.

  • PDF

ON A NEW CLASS OF SERIES IDENTITIES

  • SHEKHAWAT, NIDHI;CHOI, JUNESANG;RATHIE, ARJUN K.;PRAKASH, OM
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.339-352
    • /
    • 2015
  • We aim at giving explicit expressions of $${\sum_{m,n=0}^{{\infty}}}{\frac{{\Delta}_{m+n}(-1)^nx^{m+n}}{({\rho})_m({\rho}+i)_nm!n!}$$, where i = 0, ${\pm}1$, ${\ldots}$, ${\pm}9$ and $\{{\Delta}_n\}$ is a bounded sequence of complex numbers. The main result is derived with the help of the generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Choi. Further some special cases of the main result considered here are shown to include the results obtained earlier by Kim and Rathie and the identity due to Bailey.

몬테카를로 시뮬레이션을 적용한다면 실내공간내의 조도계산에 관한 연구 (A STUDY ON CALCULATION OF ILLUMINANCE DISTRIBUTION IN COMPLEX INTERIOR USING MONTE CARLO SIMULATION)

  • 김희철;김훈;지철근
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1992년도 추계학술발표회논문집
    • /
    • pp.25-29
    • /
    • 1992
  • In this paper, The Monte Carlo Simulation is performed in complex geometries which are composed of obstacles intercepted path of photon. Light is assumed to be particle and has particular direction and weighting value. The illuminance distribution is calculated proportional to the summation of weighting values striking area element. The result of simulation is consistent with that of experiments in a few error.

  • PDF

동영상에서 얼굴의 주색상 밝기 분포를 이용한 실시간 얼굴영역 검출기법 (Using Analysis of Major Color Component facial region detection algorithm for real-time image)

  • 최미영;김계영;최형일
    • 디지털콘텐츠학회 논문지
    • /
    • 제8권3호
    • /
    • pp.329-339
    • /
    • 2007
  • 본 논문은 연속적으로 입력되는 동영상에서 시공간 정보를 이용하여 다양한 조명환경에서도 실시간 적용이 가능한 얼굴영역 검출기법을 제안한다. 제안한 알고리즘은 연속된 두개의 연속 영상에서 에지 차영상을 구하고 연속적으로 입력되는 영상과의 차분 누적영상을 통해 초기 얼굴영역을 검출한다. 초기 얼굴영역으로부터 외부 조명의 영향을 없애기 위해, 검출된 초기 얼굴영역의 수평 프로파일을 이용하여 수직 방향으로 객체영역을 이분하며, 각각의 객체영역에 관해 주색상 밝기를 구한다. 배경과 잡음 성분을 제거한 후, 분할된 얼굴영역을 통합한 주색상 밝기 분포를 이용하여 타원으로 근사화 함으로써 정확한 얼굴의 기울기와 영역을 실시간으로 계산한다. 제안된 방법은 다양한 조명조건에서 얻어진 동영상을 이용하여 실험되었으며 얼굴의 좌 우 기울기가 $30^{\circ}$이하에서 우수한 얼굴영역 검출 성능을 보였다.

  • PDF

미노반규관(迷路半規管)과 외안사근(外眼斜筋)의 기능적(機能的) 관계(關係)에 관(關)하여 (Functional Relationship between the Vestibular Canals and the Extraocular Oblique Muscles)

  • 김재협
    • The Korean Journal of Physiology
    • /
    • 제6권2호
    • /
    • pp.49-56
    • /
    • 1972
  • This experiment was designed to explore specific functional relationship between the vestibular canals and the extraocular oblique muscles by observing the isometric tension responeses of the muscles to the selected vestibular canal excitation. The vestibular excitation was simulated by either stimulation of the individual canal nerve or endolymphatic fluid displacement in each canal. Each canal nerve was subjected to square wave pulses with a monopolar wire electrode placed closely to the ampullary nerve endings for electrical stimulation, and a fine stainless cannula was introduced into the each canal toward the ampulla and a minute amount $(0.5{\sim}3.5\;microliter)$ of fluid was injected in or ejected out by means of a microsyringe connected to the cannula to produce ampullopetal or ampullofugal displacement of endolymphatic fluid. The superior oblique muscle was contracted by the excitation of homolateral canals and was relaxed by contralateral canals. On the contrary, the inferior oblique was contracted by the contralateral canals and was relaxed by the homolateral canals. Summation of excitatory and inhibitory canal effects from the bilateral vestibular system was demonstrable on the tension changes of the oblique muscles. Excitation of either dual or triple canals of the unilateral vestibular system also caused summation effect on the tension response of the oblique pair; thus multiple signals from the different ampullary receptors seems to be converged into the relevant ocular motor muclei. Since the superior and inferior obliques are known to receive their motor fibers from the contralateral trochlear nuclei and intermediate nuclei of the homolateral oculomotor complex respectively, the above experimental evidences indicate that the ocular motor nuclei for oblique muscles receive excitatory signals from the contralateral vestibular canals and inhibitory signals from the homolateral canals.

  • PDF

OPTIMAL PERIOD SELECTION TO MINIMIZE THE END-TO-END RESPONSE TIME

  • SHIN M.;LEE W.;SUNWOO M.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents a systematic approach which determines the optimal period to minimize performance measure subject to the schedulability constraints of a real-time control system by formulating the scheduling problem as an optimal problem. The performance measure is derived from the summation of end-to-end response times of processed I/Os scheduled by the static cyclic method. The schedulability constraint is specified in terms of allowable resource utilization. At first, a uniprocessor case is considered and then it is extended to a distributed system connected through a communication link, local-inter network, UN. This approach is applied to the design of an automotive body control system in order to validate the feasibility through a real example. By using the approach, a set of optimal periods can easily be obtained without complex and advanced methods such as branch and bound (B&B) or simulated annealing.

장애물이 있는 작업공간에서 신경최적화 회로망에 의한 다중 이동로봇트의 경로제어 (Collision-Free Trajectory Control for Multiple Mobile Robots in Obstacle-resident Workspace Based on Neural Optimization Networks)

  • 이지홍
    • 대한전기학회논문지
    • /
    • 제39권4호
    • /
    • pp.403-413
    • /
    • 1990
  • A collision free trajectory control for multiple mobile robots in obstacle-resident workspace is proposed. The proposed method is based on the concept of neural optimization network which has been applied to such problems which are too complex to be handled by traditional analytical methods, and gives good adaptibility for unpredictable environment. In this paper, the positions of the mobile robot are taken as the variables of the neural circuit and the differential equations are derived based on the performance index which is the weighted summation of the functions of the distances between the goal and current position of each robot, between each pair of robots and between the goal and current position of each robot, between each pair of robots and between obstacles and robots. Also is studied the problem of local minimum and of detour in large radius around obstacles, which is caused by inertia of mobile robots. To show the validity of the proposed method an example is illustrated by computer simulation, in which 6 mobile robots with mass and friction traverse in a workspace with 6 obstacles.

이형인발공정 하중예측에 관한 연구 (Prediction of Drawing Load in the Shape Drawing Process)

  • 이태규;이찬주;이상곤;김병민
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

인공신경망과 근전도를 이용한 인간의 관절 강성 예측 (Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN)

  • 강병덕;김병찬;박신석;김현규
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF