• Title/Summary/Keyword: complex representation

Search Result 382, Processing Time 0.027 seconds

Comparative study of text representation and learning for Persian named entity recognition

  • Pour, Mohammad Mahdi Abdollah;Momtazi, Saeedeh
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.794-804
    • /
    • 2022
  • Transformer models have had a great impact on natural language processing (NLP) in recent years by realizing outstanding and efficient contextualized language models. Recent studies have used transformer-based language models for various NLP tasks, including Persian named entity recognition (NER). However, in complex tasks, for example, NER, it is difficult to determine which contextualized embedding will produce the best representation for the tasks. Considering the lack of comparative studies to investigate the use of different contextualized pretrained models with sequence modeling classifiers, we conducted a comparative study about using different classifiers and embedding models. In this paper, we use different transformer-based language models tuned with different classifiers, and we evaluate these models on the Persian NER task. We perform a comparative analysis to assess the impact of text representation and text classification methods on Persian NER performance. We train and evaluate the models on three different Persian NER datasets, that is, MoNa, Peyma, and Arman. Experimental results demonstrate that XLM-R with a linear layer and conditional random field (CRF) layer exhibited the best performance. This model achieved phrase-based F-measures of 70.04, 86.37, and 79.25 and word-based F scores of 78, 84.02, and 89.73 on the MoNa, Peyma, and Arman datasets, respectively. These results represent state-of-the-art performance on the Persian NER task.

Spectral p-dilations and polynomially bounded operators

  • Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.889-895
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$.

  • PDF

COMPUTATION OF THE MATRIX OF THE TOEPLITZ OPERATOR ON THE HARDY SPACE

  • Chung, Young-Bok
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1135-1143
    • /
    • 2019
  • The matrix representation of the Toeplitz operator on the Hardy space with respect to a generalized orthonormal basis for the space of square integrable functions associated to a bounded simply connected region in the complex plane is completely computed in terms of only the Szegő kernel and the Garabedian kernels.

Development of Self-Adaptive Meta-Heuristic Optimization Algorithm: Self-Adaptive Vision Correction Algorithm (자가 적응형 메타휴리스틱 최적화 알고리즘 개발: Self-Adaptive Vision Correction Algorithm)

  • Lee, Eui Hoon;Lee, Ho Min;Choi, Young Hwan;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2019
  • The Self-Adaptive Vision Correction Algorithm (SAVCA) developed in this study was suggested for improving usability by modifying four parameters (Modulation Transfer Function Rate, Astigmatic Rate, Astigmatic Factor and Compression Factor) except for Division Rate 1 and Division Rate 2 among six parameters in Vision Correction Algorithm (VCA). For verification, SAVCA was applied to two-dimensional mathematical benchmark functions (Six hump camel back / Easton and fenton) and 30-dimensional mathematical benchmark functions (Schwefel / Hyper sphere). It showed superior performance to other algorithms (Harmony Search, Water Cycle Algorithm, VCA, Genetic Algorithms with Floating-point representation, Shuffled Complex Evolution algorithm and Modified Shuffled Complex Evolution). Finally, SAVCA showed the best results in the engineering problem (speed reducer design). SAVCA, which has not been subjected to complicated parameter adjustment procedures, will be applicable in various fields.

A Study on the Expression Techniques and Characteristic of Hybrid Aesthetics in Contemporary Interior Design (현대 실내디자인의 하이브리드 미학적 표현기법과 특성에 관한 연구)

  • Kim, Eun-Ji;Lee, Jeong-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.1 s.60
    • /
    • pp.39-47
    • /
    • 2007
  • In comtemporary interior design, hybrid form causes cognitive turnovers of aesthetics. Especially it offers much possibility to expression techniques in interior design and works as compound system, symbolic aggregate that makes and expands various meanings. The aesthetic ideology of hybrid design can be interpreted through the philosphic concept of art, sublime, reception, representation and explains expression techniques and characteristic in interior design through various transformation and meaning conversion. The expression techinique that is a form of openness, transcendental interpretation that exceed a dupilicate of meaning. can be classified as oxymoron, defamiliarization and interface. The characteristic that is based on those expressions appears as use of complex codes of visual images, decoding strategy, intertextuality of meaning. This research attitude can explain the thinking method of interior design by defining the epistemological scheme that is basically involved in expressional styles with characteristics of hybrid aesthetics. In order to be recognized as the object of aesthetics, hybrid has to be approached by interpretational methods of expression techniques. Consequently the characters of expression techniques in hybrid design can be investigated as one of the methodology in interior design plan.

Numerical Simulation of Effects of Atmospheric Flow Fields Using SurFace Observational Data on Dispersion Fields of Air Pollutants in Gwangyang Bay (광양만권역에서의 자료동화된 대기 유동장이 대기 오염 물질의 확산장에 미치는 영향에 관한 수치모의)

  • Lee Hwa Woon;Won Hye Young;Choi Hyun-Jung;Kim Hyun Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2005
  • A critical component of air pollution modeling is the representation of atmospheric flow fields within a model domain, since an accurate air quality simulation requires an accurate portrayal of the three-dimensional wind fields. The present study investigated data assimilation using surface observational data in the complex coastal regions to simulate a realistic atmospheric flow fields. Surface observational data were categorized into three groups (Near coastal region, Far coastal region 1, Far costal region 2) by the locations where the sites are. Experiments were designed according to the location of observational stations and MM5/CALPUFF was used. The results of numerical simulation of atmospheric flow fields are used as input data for CALPUFF which predicts dispersion fields of air pollutants. The result of this study indicated that data assimilation using data in the far coastal region 2 provided an attractive method for generating realistic meteorological fields and dispersion fields of air pollutants in Gwangyang area because data in the near coastal region are variable and narrow representation.

Certain exact complexes associated to the pieri type skew young diagrams

  • Chun, Yoo-Bong;Ko, Hyoung J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.265-275
    • /
    • 1992
  • The characteristic free representation theory of the general linear group has found a wide range of applications, ranging from the theory of free resolutions to the symmetric function theory. Representation theory is used to facilitate the calculation of explicit free resolutions of large classes of ideals (and modules). Recently, K. Akin and D. A. Buchsbaum [2] realized the Jacobi-Trudi identity for a Schur function as a resolution of GL$_{n}$-modules. Over a field of characteristic zero, it was observed by A. Lascoux [6]. T.Jozefiak and J.Weyman [5] used the Koszul complex to realize a formula of D.E. Littlewood as a resolution of schur modules. This leads us to further study resolutions of Schur modules of a particular form. In this article we will describe some new classes of finite free resolutions associated to the Pieri type skew Young diagrams. As a special case of these finite free resolutions we obtain the generalized Koszul complex constructed in [1]. In section 2 we review some of the basic difinitions and properties of Schur modules that we shall use. In section 3 we describe certain exact complexes associated to the Pieri type skew partitions. Throughout this article, unless otherwise specified, R is a commutative ring with an identity element and a mudule F is a finitely generated free R-module.e.

  • PDF

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

Learning from an Expert Teacher: Feynman's Teaching of Gravitation as an Examplar

  • Park, Jiyun;Lee, Gyoungho;Kim, Jiwon;Treagust, David F.
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.173-193
    • /
    • 2019
  • An expert teachers' instruction can be helpful to other teachers because good teaching effectively guides students to develop meaningful learning. Feynman is an excellent physics lecturer as well as one of the greatest physicists of the 20th century who presented and explained physics with his unique teaching style based on his great store of knowledge. However, it is not easy to capture and visualize teaching because it is not only the complex phenomena interrelated to various factors with the content to be taught but also the tacit representation. In this study, the framework of knowledge & belief based on the integrated mental model theory was used as a tool to capture and visualize complex and tacit representation of Feynman's teaching of 'The theory of gravitation,' a chapter in The Feynman Lectures on Physics. Feynman's teaching was found to go beyond the transmission of physics concepts by showing that components of the framework of knowledge & belief were effectively intertwined and integrated in his teaching and the storyline was well-organized. On the basis of these discussions, the implications of Feynman's teaching analyzed within the framework of knowledge & belief for physics teacher education are derived. Finally, the characteristics of the framework of knowledge & belief as tools for the analysis of teaching are presented.

State-Based Behavior Modeling in Software and Systems Engineering

  • Sabah Al-Fedaghi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.21-32
    • /
    • 2023
  • The design of complex man-made systems mostly involves a conceptual modeling phase; therefore, it is important to ensure an appropriate analysis method for these models. A key concept for such analysis is the development of a diagramming technique (e.g., UML) because diagrams can describe entities and processes and emphasize important aspects of the systems being described. The analysis also includes an examination of ontological concepts such as states and events, which are used as a basis for the modeling process. Studying fundamental concepts allows us to understand more deeply the relationship between these concepts and modeling frameworks. In this paper, we critically analyze the classic definition of a state utilizing the Thinging machine (TM) model. States in state machine diagrams are considered the appropriate basis for modeling system behavioral aspects. Despite its wide application in hardware design, the integration of a state machine model into a software system's modeling requirements increased the difficulty of graphical representation (e.g., integration between structural and behavioral diagrams). To understand such a problem, in this paper, we project (create an equivalent representation of) states in TM machines. As a case study, we re-modeled a state machine of an assembly line system in a TM. Additionally, we added possible triggers (transitions) of the given states to the TM representation. The outcome is a complicated picture of assembly line behavior. Therefore, as an alternative solution, we re-modeled the assembly line based solely on the TM. This new model presents a clear contrast between state-based modeling of assembly line behavior and the TM approach. The TM modeling seems more systematic than its counterpart, the state machine, and its notions are well defined. In a TM, states are just compound events. A model of a more complex system than the one in the assembly line has strengthened such a conclusion.