Table 1. Comparison for each operator in VCA and SAVCA
Table 2. Pseudo code of SAVCA
Table 3. Specification of problems for comparison [1]
Table 4. Results for application of 2D mathematical benchmark function (Six Hump Camel Back) [1]
Table 5. Results for application of 2D mathematical benchmark function (Easton and Fenton) [1]
Table 7. Results for application of 30D mathematical benchmark function (Hyper Sphere) [1]
Table 8. Results for application of engineering function (Speed reducer design) [1]
Table 6. Results for application of 30D mathematical benchmark function (Schwefel) [1]
References
- E. H. Lee, D. G. Yoo, Y.H. Choi, J. H. Kim, "Development of the new meta-heuristic optimization algorithm inspired by a vision correction procedure: Vision Correction Algorithm", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.3, pp.117-126, March 2016. DOI: https://dx.doi.org/10.5762/KAIS.2016.17.3.117
- D. E. Goldberg, J. H. Holland, "Genetic Algorithms and Machine Learning", Machine Learning, Vol.3, Issue2-3, pp.95-99, Oct. 1988. DOI: https://doi.org/10.1023/A:10226020
- M. Dorigo, Optimization, learning and natural algorithms, Ph. D. Thesis, Politecnico di Milano, Italy, 1992.
- J. Kennedy, R. Eberhart, "Particle swarm optimization", In Neural Networks, 1995. Proceedings, IEEE International Conference on, IEEE, Perth, Australia Vol.4, pp.1942-1948, Nov. 1995. DOI: https://doi.org/10.1007/978-0-387-30164-8_630
- Z. W. Geem, J. H. Kim, G. V. Loganathan, "A new heuristic optimization algorithm: harmony search", Simulation, Vol.76, Issue2, pp.60-68, Feb. 2001. DOI: https://doi.org/10.1177/003754970107600201
- I. Fister Jr., X.S. Yang, I. Fister, J. Brest, D. Fister, "A Brief Review of Nature-Inspired Algorithms for Optimization", Elektrotehniski vestnik, Vol.80, No.3, pp.1-7, July 2013. DOI: https://arxiv.org/abs/1307.4186
- K. Deb, H. G. Beyer, "Self-adaptive genetic algorithms with simulated binary crossover", Evolutionary computation, Vol.9, Issue2, pp.197-221, March 2001. DOI: https://doi.org/10.1162/106365601750190406
- A. Ismail, A. P. Engelbrecht. "Self-adaptive particle swarm optimization" In Asia-Pacific Conference on Simulated Evolution and Learning. Springer, Berlin, Heidelberg, pp.228-237, Dec. 2012. DOI: https://doi.org/10.1007/978-3-642-34859-4_23
- M. G. Omran, A. Salman, A. P. Engelbrecht, "Self-adaptive differential evolution", International Conference on Computational and Information Science. Springer, Berlin, Heidelberg, pp.192-199, Dec. 2005. DOI: https://dx.doi.org/10.1007/11596448_28
- Z. W. Geem, "Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search", Journal of Hydrologic Engineering, Vol.16, Issue8, pp.684-688, Aug. 2011. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000352
- S. Jiang, Y. Zhang, P. Wang, M. Zheng, "An almostparameter-free harmony search algorithm for groundwater pollution source identification", Water Science and Technology, Vol.68, Issue11, pp.2359-2366, Oct. 2013. DOI: https://doi.org/10.2166/wst.2013.499
- Y. H. Choi, H. M. Lee, D. G. Yoo, J. H. Kim, "Self-adaptive multi-objective harmony search for optimal design of water distribution networks" Engineering Optimization, Vol.49, Issue11, pp.1957-1977, 2017. DOI: https://doi.org/10.1080/0305215X.2016.1273910