• Title/Summary/Keyword: complex representation

Search Result 382, Processing Time 0.025 seconds

Optimal Basis Functions for Siegert Resonance State Representation in Al2 Electronic Predissociation

  • Jang, Hyo Weon
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.172-175
    • /
    • 2013
  • We compare the relative usefulness of common basis functions and numerical integration methods in representing complex resonance state encountered in the molecular scattering problem of aluminum dimer electronic predissociation. Specifically, the basis set size and computing CPU times are monitored in order to find the minimum requirement for ensuring the modest accuracy of calculated resonance energies (0.1 $cm^{-1}$) for more than 100 resonance states. The combination of the so-called one-dimensional box eigenfunctions and energy-dependent boundary functions are found to be most efficient if integration is done using the basis set quadrature rules.

FUZZY REASONING AND FUZZY PETRI NETS

  • Scarpelli, Helois;Gomide, Fernando
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1326-1329
    • /
    • 1993
  • This work presents a net-based structure to model approximate reasoning using fuzzy production rules, the Fuzzy Petri Net model. The Fuzzy Petri Net model is formally defined as a n-uple of elements. It allows for the representation of simple and complex forms of rules such as rules with conjunction in the antecedent and qualified rules. Parallel rules and conflicting rules can be modeled as well. We also developed an analysis method based on state equations and two fuzzy reasoning algorithms. Finally, the proposed method is applied to an example.

  • PDF

CLASSIFICATION OF EQUIVARIANT VECTOR BUNDLES OVER REAL PROJECTIVE PLANE

  • Kim, Min Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.319-335
    • /
    • 2011
  • We classify equivariant topoligical complex vector bundles over real projective plane under a compact Lie group (not necessarily effective) action. It is shown that nonequivariant Chern classes and isotropy representations at (at most) three points are sufficient to classify equivariant vector bundles over real projective plane except one case. To do it, we relate the problem to classification on two-sphere through the covering map because equivariant vector bundles over two-sphere have been already classified.

"空間轉向"与叙事空間

  • Jo, Bin;Eom, Yeong-Uk
    • 중국학논총
    • /
    • no.66
    • /
    • pp.1-13
    • /
    • 2020
  • After the "spatial turn" space narrative has become the hottest "doctrine". Howe er, the current space narrative to a bottleneck stage, a variety of reasons. "Spatial turn" of the modern trend of thought has a unshirkable responsibility. Has been, scholars turned to "empty" the complex relationship between space narrative and, type of narrative space narrative theory problem also not too clear by the noun, the term textual research, narrative of space studies provide some of the necessary theoretical support, to promote the healthy de elopment of the research on novel narrative space.

A CHARACTERIZATION OF AUTOMORPHISMS OF THE UNIT DISC BY THE POINCARÉ METRIC

  • Kang-Hyurk Lee;Kyu-Bo Moon
    • East Asian mathematical journal
    • /
    • v.39 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • Non-trivial automorphisms of the unit disc in the complex plane can be classified by three classes; elliptic, parabolic and hyperbolic automorphisms. This classification is due to a representation in the projective special linear group of the real field, or in terms of fixed points on the closure of the unit disc. In this paper, we will characterize this classification by the distance function of the Poincaré metric on the interior of the unit disc.

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

Improved Transmission Path Visualization of Vibration Power Flow for Stiffened Plate Using Streamlines Representation (유선 표현법을 이용한 보강판의 진동파워흐름에 대한 개선된 전달경로 가시화)

  • Fawazi, Noor;Jeong, Un-Chang;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.692-700
    • /
    • 2012
  • Vibration intensity has been used to localize vibration source of a vibrating system. Not only that, vibration intensity has also been used for structural diagnostic in identifying crack and mounted stiffeners. To clearly identify the location of vibration source and understand the changes of energy transmission path, clear flow visualization is required. Most of previous works used vectors to indicate the magnitude and direction of emerging vibration energy and transmission paths. However, due to the large surface area of a plate like-structure, clear transmission paths cannot be achieved using vector visualization. This becomes an issue when detail vector flow at all locations of the whole plate surface is required. In this study, streamlines visualization is used to clearly indicate the power flow transmission path at all plate surface. By using streamlines representation, not only clear transmission paths are obtained, but also improves the vector visualization which helps us to understand the changes of the energy flow especially for stiffened plates. In this study, vibration intensity computation is firstly compared to previous work to validate the vibration intensity computation. To clearly show the power flow transmission paths, streamlines representation is shown. This representation overcomes the unclear vector direction especially for stiffened plates. Different pattern of energy transmission path can be observed using streamlines representation for stiffened and unstiffened plate. The complex streamlines pattern can also be observed at high resonance frequencies which is unclear by using vector representation.

Knowledge Support and Automation of Paneled Building Envelopes for Complex Buildings using Script Programming

  • Park, Jungdae;Im, Jinkyu
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.85-90
    • /
    • 2015
  • Advances in the technology of computational design are giving architects and engineers the opportunity to analyze buildings with complex geometries. This study explores the optimization and automation process using the parametric design method, and uses digital tools to achieve surface representation and panelization for curved shaped office buildings. In this paper, we propose parametric algorithms of dimensional and geometric constraints using the Knowledge-ware scripts embedded in Gehry Technologies' Digital Project. The knowledge-based design methods proposed in this study can be used to systemize the knowledge possessed by experts in the form of data. Such knowledge is required to promote collaboration between designers and engineers in the process of CAD/CAE/CAM. The aim of this study is to integrate the process into design, which establishes an integrated process. This integration enables two-way feedback between design and construction data by combining the methods used in designing, engineering, and construction.

Comparison of Full-Field Stresses around an Inclined Crack Tip by Using Fringe Data of Finite Element Method with Photoelastic Experiment

  • Baek, Tae-Hyun;Kim, Myung-Soo;Chen, Lei
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.557-562
    • /
    • 2009
  • Abrupt change of cross-section in mechanical parts is one of significant causes of structural fracture. In this paper, a hybrid method is employed to analyze the stress distribution of a discontinuous plate. The plate with an inclined crack is utilized in our experiment and the stress field in the vicinity of crack tip is calculated through isochromatic fringe order of given points. This calculation can be made handy through least-squares method integrated with complex power series representation(Laurent series) implemented on a computer program for high-speed processing. In order to accurately compare calculated results with experimental ones, both of actual and regenerated photoelastic fringe patterns are doubled and sharpened by digital image processing. The experiment results show that regenerated patterns obtained by hybrid method are quite comparable to actual patterns.

A Design of Spatio-Temporal Data Model for Simple Fuzzy Regions

  • Vu Thi Hong Nhan;Chi, Jeong-Hee;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.384-387
    • /
    • 2003
  • Most of the real world phenomena change over time. The ability to represent and to reason geographic data becomes crucial. A large amount of non-standard applications are dealing with data characterized by spatial, temporal and/or uncertainty features. Non-standard data like spatial and temporal data have an inner complex structure requiring sophisticated data representation, and their operations necessitate sophisticated and efficient algorithms. Current GIS technology is inefficient to model and to handle complex geographic phenomena, which involve space, time and uncertainty dimensions. This paper concentrates on developing a fuzzy spatio-temporal data model based on fuzzy set theory and relational data models. Fuzzy spatio-temporal operators are also provided to support dynamic query.

  • PDF