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A CHARACTERIZATION OF AUTOMORPHISMS OF THE

UNIT DISC BY THE POINCARÉ METRIC

Kang-Hyurk Lee∗ and Kyu-Bo Moon

Abstract. Non-trivial automorphisms of the unit disc in the complex

plane can be classified by three classes; elliptic, parabolic and hyperbolic

automorphisms. This classification is due to a representation in the pro-
jective special linear group of the real field, or in terms of fixed points on

the closure of the unit disc. In this paper, we will characterize this classi-

fication by the distance function of the Poincaré metric on the interior of
the unit disc.

1. Introduction

By the uniformization of Riemann surfaces ([10, 6]), most Riemann surface
can be generated by the unit disc ∆ = {z ∈ C : |z| < 1} as a quotient space.
More precisely, a compact Riemann surface X of genus g ≥ 2 is conformally
equivalent to a quotient space Γ\∆ where Γ is a discrete group of the holo-
morphic (orientation-preserving conformal) automorphism group Aut(∆) of ∆.
Therefore it has been important to study the group structure of Aut(∆) and its
action on ∆.

As a Lie group, Aut(∆) is isomorphic to the projective special linear group
PSL(2,R) = SL(2,R)/ {±I} acting on the upper half-plane of C by fractional
linear transformations. The characteristic polynomial of H ∈ SL(2,R) is of the
form

λ2 − Tr(H)λ+ det(H) = λ2 − Tr(H)λ+ 1 ,

so the value Tr(H)2 − 4 gives eigenvalues of H by

λ =
Tr(H)±

√
Tr(H)2 − 4

2
.
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This gives a typical classification of each H ∈ PSL(2,R) into three types; H is
called elliptic, parabolic and hyperbolic if and only if |Tr(H)| < 2, = 2 or > 2,
with respectively (see [7] and [3]).

Thus using the representation into PSL(2,R), we have the same classification
of Aut(∆) and Aut(S) of a Riemann surface S conformally equivalent to the
unit disc. For a nontrivial automorphism f of ∆ and its representation Hf ∈
PSL(2,R), the type of f (so eigenvalues of Hf ) completely describes its action

on ∆, as following.

(1) f has a fixed point in ∆ if and only if f is elliptic;
(2) f has only one fixed point in the boundary ∂∆ if and only if f is

parabolic;
(3) f has only two fixed points in the boundary ∂∆ if and only if f is

hyperbolic.

The main question of this research is how one can determine the type of
f ∈ Aut(∆) not using the representation into PSL(2,R) and not using boundary
extension of Aut(∆). Namely, how one can distinguish automorphism types by
actions on the inside of ∆?. For the intrinsic approach, it should be natural to
employ the Poincaré metric,

ds2∆ =
1(

1− |z|2
)2 |dz|2 ,

of the unit disc which is a complete hermitian metric of a negative constant
curvature and the unique, holomorphically invariant metric of ∆ (see [4]).

1.1. Previous works

In the previous works ([8, 9]), we gave methods to distinguish parabolic and
hyperbolic automorphisms in terms of the Poincaré metric.

For the intrinsic argument, we employed, as a base space, a simply con-
nected Riemann surface S admitting a complete hermitian metric g of constant
curvature κ ≡ −4. By the uniformization theorem, this (S, g) is conformally
equivalent to the Poincaré disc model (∆, ds2∆). We can define a type of a
nontrivial automorphism f of S by a type of a corresponding automorphism
f̃ ∈ Aut(∆). Here f̃ is given by

f̃ = F−1 ◦ f ◦ F

for some biholomorphism F : ∆ → S. A corresponding f̃ is not uniquely
determined, but a type of f̃ is always same. Thus a type of f is well-defined.

In order to distinguish types, we employed a test function intrinsically given
by the metric g. Given base point p ∈ S, a test function φp : S → R is the
negatively valued function defined by

φg,p(s) = tanh2(dg(p, s))− 1 (1)
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for s ∈ S where dg is the distance function of (S, g). Let f ∈ Aut(S) and denote

the n-th iteration of f by f (n), i.e. f (1) = f and f (n+1) = f (n) ◦ f . When we
consider the sequence {φn} of functions defined by

φn =
φg,p ◦ f (n)(

φg,p ◦ f (n)
)
(p)

, (2)

this sequence converges to some positive function φ̂ : S → R. If f has no
fixed point in S, equivalently f is parabolic or hyperbolic, the function φ̂ can
determine a type of f .

Theorem 1.1 (Lee [8]). For an automorphism f of S, the sequence {φn} of
functions in (2) converges to a positive function φ̂ and

φ̂ ◦ f ≡ cφ̂

for some positive c. Suppose that f has no fixed point on S. Then f is parabolic
or hyperbolic if and only if c = 1 or c ̸= 1, with respectively.

Note that if f is elliptic, then the constant c of the theorem is always 1. Thus
this approach can not distinguish elliptic automorphisms from others.

The function φp in (2) is a purely geometric quantity of S ≃ ∆, that means
φp is computed by an intrinsic way. But by the limit procedure involved in the
theorem, types cannot be determined in the finite number of calculation.

In [9], we studied the same problem to distinguish the hyperbolicity and
the parabolicity without a limiting procedure. Let us go back to the Riemann
surface (S, g) and consider two numbers c1 and c2 which are given by p ∈ S and
f ∈ Aut(S):

cn =

(
φg,p ◦ f (n+1)

)
(p)(

φg,p ◦ f (n)
)
(p)

=
tanh2

(
dg

(
p, f (n+1)(p)

))
− 1

tanh2
(
dg

(
p, f (n)(p)

))
− 1

. (3)

Note that cn = φn(f(p)) for any n, and the numbers c1 and c2 are defined by
distances from p to its images f(p), f (2)(p), f (3)(p); so can be calculated in a
finite step of iterations. A relation between c1 and c2 now determines a type of
f .

Theorem 1.2 (Lee [9]). For f ∈ Aut(S) without fixed point, f is parabolic or
hyperbolic if and only if 8c2 − 5c1c2 − 3 = 0 or < 0, with respectively.

In case of elliptic f and p ∈ S with f(p) ̸= p, we can also consider the value
8c2 − 5c1c2 − 3. But this value can be positive, negative or zero by a choice of
f .

1.2. The main result

In this paper, we will give a method to intrinsically distinguish types of
automorphisms even the case of elliptic automorphisms.

Let
an = (φg,p ◦ f (n))(p) = tanh2(dg(p, f

(n)(p)))− 1 . (4)
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Then the number cn in (3) can be written by

cn =
an+1

an
,

so the quantity 8c2 − 5c1c2 − 3 is calculated by a1, a2, a3. In this paper,
we shall consider only first two constants a1 and a2 which give a complete
characterization of automorphism types as following.

Theorem 1.3. Let S be a simply connected Riemann surface admitting a her-
mitian metric g of constant curvature −4. For a point p ∈ S with f(p) ̸= p, let
φg,p : S → R be a negative function defined as (1) and let

δ(f, p) = a1 − 4a2 − 3a1a2 .

where a1 and a2 are as in (4). Then f is elliptic, parabolic or hyperbolic if and
only if δ(f, p) > 0, = 0 or < 0, with respectively.

This says that we can determine the type of f ∈ Aut(S) by the quantity
δ(f, p) calculated intrinsically by distances from p to f(p) and f (2)(p) = f(f(p)).
If f(p) = p, then f is the identity or f(p′) ̸= p′ for any p′ ̸= p; thus taking any
point p′ ̸= p, we can determine whether f is trivial or elliptic.

In Section 2, we will show Theorem 1.3 for the Poincaré disc (∆, ds2∆) and
some model automorphisms. Then the theorem for general Riemann surface S
will be proved in Section 3.

2. Testing the type of automorphisms for the unit disc

In this section, we will prove Theorem 1.3 for S = ∆ and model automor-
phisms of ∆ for each types. In this case, the hermitian metric g of the theorem
is the Poincaré metric ds2∆ whose distance function d∆ = dds2∆ is given by

d∆(z, w) = tanh−1

∣∣∣∣ z − w

1− w̄z

∣∣∣∣
for z, w ∈ ∆ (see [5, 2]). Given point p ∈ ∆, the test function in (1) can be
written by

φp(z) := φds2∆,p(z) = tanh2(d∆(p, z))− 1 =

∣∣∣∣ z − p

1− p̄z

∣∣∣∣2 − 1 . (5)

For cases of parabolic and hyperbolic automorphisms, we will consider the
case of p = 0. Then the test function is now

φ0(z) = tanh2(dds2(0, z))− 1 = |z|2 − 1 . (6)

In order to prove Theorem 1.3 in Section 3, we will see

δ(f, p) = a1 − 4a2 − 3a1a2 where an = tanh2(d∆(p, f
(n)(p))− 1

for model automorphisms f ∈ Aut(∆) of the following form.

(1) an elliptic model f if the origin 0 ∈ ∆ is the only fixed point of f ;
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(2) a parabolic model f if the boundary point 1 ∈ ∂∆ is the only fixed point
of f ;

(3) a hyperbolic model f if boundary points 1,−1 ∈ ∂∆ are only fixed points
of f .

2.1. Elliptic automorphisms leaving 0 fixed

Let f be an elliptic automorphism of ∆ whose fixed point is the origin 0.
Then the Schwarz lemma implies that

f(z) = Rθ(z) = eiθz (7)

for some θ ∈ (0, 2π). Take a real number r with 0 < r < 1 and consider it as
an interior point of ∆, i.e. r ∈ ∆. We will see

an =
(
φr ◦ f (n)

)
(r) = φr (Rnθ(r)) and δ(Rθ, r) = a1 − 4a2 − 3a1a2

where φr of (5) is written by

φr(z) = φds2∆,r(z) =

∣∣∣∣ z − r

1− rz

∣∣∣∣2 − 1 = (|z|2 − 1)
1− r2

|1− rz|2
= φ0(z)

1− r2

|1− rz|2
.

Since

φ0(Rnθ(z)) =
∣∣einθz∣∣2 − 1 = |z|2 − 1 ,

we have

an = φr (Rnθ(r)) = φr

(
einθr

)
=

−(1− r2)2

|1− einθr2|2

=
−(1− r2)2

|1− r2 cosnθ − ir2 sinnθ|2
=

−(1− r2)2

1 + r4 − 2r2 cosnθ

=
(1− r2)2

−1− r4 + 2r2 cosnθ
.

Since

δ(Rθ, r) = a1 − 4a2 − 3a1a2 = a1a2

(
1

a2
− 4

a1
− 3

)
and a1a2 > 0, it suffice to compute the second factor to determine the sign of
δ(Rθ, r). By a straightforward computation, we have

1

a2
− 4

a1
− 3 =

−1− r4 + 2r2 cos 2θ

(1− r2)2
+

4 + 4r4 − 8r2 cos θ

(1− r2)2
− 3

=
2r2 cos 2θ − 8r2 cos θ + 6r2

(1− r2)2
= 2r2

2 cos2 θ − 4 cos θ + 2

(1− r2)2
=

4r2(cos θ − 1)2

(1− r2)2
.

By choice of θ ∈ (0, 2π), we can conclude that



16 K.-H. LEE AND K.-B. MOON

Proposition 2.1. If f is an elliptic automorphism of ∆ leaving the origin 0
fixed, then

δ(f, r) > 0

for any r ∈ ∆ with 0 < r < 1.

2.2. Parabolic automorphisms leaving 1 fixed

Let f be a parabolic automorphism of ∆ leaving 1 ∈ ∂∆ fixed. Then from
Proposition 2.3 in [8], there is a unique t ∈ R such that

f ≡ Pt

where

Pt(z) =
(2 + it)z − it

itz + (2− it)
. (8)

For the sake of simplicity, let

pt =
−it

2 + it
.

Then

Pt(0) = −p̄t =
−it

2− it
and Pt(z) =

1 + p̄t
1 + pt

z + pt
1 + p̄tz

.

As we showed in [8], the family P = {Pt : t ∈ R} is an 1-parameter family, i.e.

Pt ◦ Ps = Pt+s .

Therefore, f (n) = Pnt and

f (n)(0) = −p̄nt =
−int

2− int
.

When we choose p = 0 as a base point for Theorem 1.3 and (5), the test function
is φ0 as in (6) and

an = φ0

(
f (n)(0)

)
= φ0(−p̄nt) =

∣∣∣∣ −int

2− int

∣∣∣∣2 − 1 =
n2t2

4 + n2t2
− 1 =

−4

4 + n2t2
.

Thus

δ(f, p) = δ(Pt, 0) = a1 − 4a2 − 3a1a2

= −4

(
1

4 + t2
+

−4

4 + 4t2
+

12

(4 + t2)(4 + 4t2)

)
=

−4

(4 + t2)(4 + 4t2)

(
4 + 4t2 − 4(4 + t2) + 12

)
= 0 .

This implies

Proposition 2.2. If f is a parabolic automorphism of ∆ leaving 1 fixed, then

δ(f, 0) = δ(Pt, 0) = 0 .
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Next, we will see δ(f, 0) < 0 in the case of hyperbolic automorphism f leaving
specifically 1 and −1 fixed. But this is not sufficient to prove Theorem 1.3. We
have to consider more general hyperbolic case; especially f has 1 and a general
point q ∈ ∂∆ \ {1} as its fixed points. We will use the transitivity of the action
P on ∂∆ \ {1}.

Remark 1. The image of −1 under Pt is

Pt(−1) =
t2 − 1

t2 + 1
+ i

2t

t2 + 1
.

Let q be a boundary point of ∆ with q ̸= 1, i.e. q ∈ ∂∆ \ {1}. Taking θ and t
satisfying 0 < θ < 2π, q = eiθ and t = cot(θ/2), we can show that Pt(−1) = q
so P−t(q) = −1 (see Remark 2.1 in [9]). Therefore the parabolic subgroup
P = {Pt : t ∈ R} acts on ∂∆ \ {1} transitively.

2.3. Hyperbolic automorphisms leaving 1 and −1 fixed

For each t ∈ R, we can define the holomorphic function Ht on ∆ by

Ht(z) =
z + ht

1 + htz
where ht = tanh

t

2
=

et − 1

et + 1
. (9)

It is a hyperbolic automorphism of ∆ leaving 1 and−1 fixed andH = {Ht : t ∈ R}
is an 1-parameter family, i.e.

Ht ◦ Hs = Ht+s .

Conversely, given nontrivial hyperbolic automorphism f of ∆ with fixed point
1 and −1, we have a unique t ̸= 0 such that

f ≡ Ht

(see Section 2 of [9]). Simultaneously,

f (n) = Hnt and f (n)(0) = hnt =
ent − 1

ent + 1
.

As the same way for the parabolic case in Section 2.2, for the base point p = 0,
we have

an = φ0

(
f (n)(0)

)
= φ0(hnt) =

(
ent − 1

ent + 1

)2

− 1 =
−4ent

(ent + 1)2
.

Thus

δ(f, p) = δ(Ht, 0) = a1 − 4a2 − 3a1a2

= −4

(
et

(et + 1)2
+

−4e2t

(e2t + 1)2
+

12e3t

(et + 1)2(e2t + 1)2

)
=

−4

(et + 1)2(e2t + 1)2
(
e5t − 4e4t + 6e3t − 4e2t + et

)
=

−4et(et − 1)4

(et + 1)2(e2t + 1)2
.
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Since we only consider t ̸= 0, i.e. et ̸= 1, we can conclude that

δ(f, 0) = δ(Ht, 0) < 0 .

In the next section, we will deal with hyperbolic automorphism under a weak
assumption to boundary fixed points.

2.4. Hyperbolic automorphisms in general

Continuing from the previous subsection, we consider the hyperbolic auto-
morphism f = Ht of (9) for some nonzero t. Here we will consider a point p in
∆ and the sequence of numbers

an =
(
φp ◦ f (n)

)
(p) = φp (Hnt(p)) (10)

where

φp(z) = φds2∆,p(z) =

∣∣∣∣ z − p

1− p̄z

∣∣∣∣2 − 1 = (|z|2 − 1)
1− |p|2

|1− p̄z|2
= φ0(z)

1− |p|2

|1− p̄z|2
.

Since

(φ0 ◦ Ht)(z) =
(|z|2 − 1)(1− h2

t )

|1 + htz|2
,

it follows that

an =
(|p|2 − 1)(1− h2

nt)

|1 + hntp|2
1− |p|2

|1− p̄Hnt(p)|2
=

(h2
nt − 1)(1− |p|2)2

|1 + hntp|2 |1− p̄Hnt(p)|2
.

We will calculate the value an of (10) for the point p specifically given by

p =
−is

2− is
(s ∈ R) (11)

which belongs to ∆. Let us consider

1− p̄Hnt(p) = 1− is

2 + is

p+ hnt

1 + hntp
=

(2 + is)(1 + hntp)− is(p+ hnt)

(2 + is)(1 + hntp)
.

Applying (11) to the numerator (2+ is)(1+hntp)− is(p+hnt) only, we can get

1− p̄Hnt(p) =
1

(2 + is)(1 + hntp)

4(1− ishnt)

2− is
=

4(1− ishnt)

(4 + s2)(1 + hntp)
.

Now an is written by

an =
(h2

nt − 1)(1− |p|2)2

|1 + hntp|2
(4 + s2)2 |1 + hntp|2

16 |1− ishnt|2

=
(4 + s2)2(1− |p|2)2

16

(h2
nt − 1)

1 + s2h2
nt

.
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Since |p|2 = s2/(4 + s2) from (11), the first factor above is simply written by

(4 + s2)2(1− |p|2)2

16
=

(4 + s2)2

16

(
1− s2

4 + s2

)2

= 1 .

Let us compute δ(Ht, p):

a1 − 4a2 − 3a1a2 =
(h2

t − 1)

1 + s2h2
t

− 4
(h2

2t − 1)

1 + s2h2
2t

− 3
(h2

t − 1)

1 + s2h2
t

(h2
2t − 1)

1 + s2h2
2t

=
(1 + s2)(4ht + h2t)(ht − h2t)

(1 + s2h2
t )(1 + s2h2

2t)
.

Applying h2t = tanh(t) = 2 tanh(t/2)/(1+tanh2(t/2)) = 2ht/(1+h2
t ), it follows

that

a1 − 4a2 − 3a1a2 =
(1 + s2)

(1 + s2h2
t )(1 + s2h2

2t)

(
4ht +

2ht

1 + h2
t

)(
ht −

2ht

1 + h2
t

)
=

(1 + s2)h2
t (4h

2
t + 6)(h2

t − 1)

(1 + s2h2
t )(1 + s2h2

2t)(1 + h2
t )

2
.

The only negative factor of the last term is h2
t − 1 = tanh2(t/2)− 1 < 0. Thus

we have
δ(Ht, p) = a1 − 4a2 − 3a1a2 < 0 (12)

for (10) and (11). Using this, we can give the following conclusion.

Proposition 2.3. If f is a hyperbolic automorphism of ∆ leaving 1 fixed, then

δ(f, 0) < 0 .

Proof. Let f be a hyperbolic automorphism leaving 1 fixed and let q ∈ ∂∆\{1}
be another fixed point of f . As mentioned in Remark 1, we have a suitable s
such that the parabolic model Ps in (8) satisfies

Ps(q) = −1 .

Since Ps always leaves 1 fixed, the automorphism

f̃ = Ps ◦ f ◦ P−1
s = Ps ◦ f ◦ P−s

satisfies f̃(1) = 1 and f̃(−1) = −1. Thus f̃ is a hyperbolic automorphism

leaving both 1 and −1 fixed, so f̃ = Ht for some nonzero t. Moreover iterations
of f̃ is simply written by

f̃ (n) = Hnt = (Ps ◦ f ◦ P−s)
(n)

= Ps ◦ f (n) ◦ P−s

for any positive integer n. As we showed in Section 2.2, the image p = Ps(0) is

p = Ps(0) =
1 + p̄s
1 + ps

ps =
−is

2− is

which coincides with (11). Note that 0 = P−s(p) so

f (n)(0) = f (n)(P−s(p)) = (f (n) ◦ P−s)(p)
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by the definition of p. Since Ps is an isometry of the Poincaré metric, we get

d∆(0, f
(n)(0)) = d∆

(
P−s(p), (f

(n) ◦ P−s)(p)
)

= d∆

(
(Ps ◦ P−s)(p), (Ps ◦ f (n) ◦ P−s)(p)

)
= d∆(p,Hnt(p)) = d∆(p, f̃

(n)(p)) .

This means that δ(f, 0) = δ(Ht, p) < 0 from (12), so it completes the proof. □

3. Proof of Theorem 1.3

Let S be a simply connected Riemann surface with a complete hermitian
metric g of constant curvature −4. Then there is a holomorphic isometry

F : (∆, ds2∆) → (S, g) (13)

by the uniformization theorem ([10, 6]) and the Schwarz-Ahlfors lemma ([1])
Let f be an automorphism of S and let p ∈ S be a some point of S with

f(p) ̸= p. Then we have the pulling-back automorphism f̃ = F ∗f of ∆ given
by

f̃ = F ∗f = F−1 ◦ f ◦ F .

Let p̃ = F−1(p) ∈ ∆. Then F (p̃) = p and constants an in (4) corresponding to

pairs (f, p) and (f̃ , p̃) coincide with each others since

dg

(
p, f (n)(p)

)
= dg

(
F (p̃), f (n)(F (p̃))

)
= d∆

(
F−1(F (p̃)), F−1(f (n)(F (p̃)))

)
= d∆

(
p̃, f̃ (n)(p̃)

)
,

where d∆ = dds2∆ is the distance of (∆, ds2∆). This implies that

δ(f, p) = δ(f̃ , p̃) .

As we mentioned in Section 1.1, the type of f is the same as that of f̃ and
δ(f̃ , p̃) is not changed any choice of F . Therefore it suffices to determine sign

of δ(f̃ , p̃) taking suitable F (so f̃).

Suppose that f is hyperbolic or parabolic, then f̃ has no fixed point inside
∆. Since ∆ is homogeneous, we may assume that

p̃ = F−1(p) = 0 .

Since f̃ ∈ Aut(∆) is extended to ∆, it has at least one fixed point on the
boundary ∂∆ by the assumption. We can also assume that the extension of
f̃ to ∆ leaves the point 1 fixed since R = {Rθ : θ ∈ R} as in (7) acts on ∂∆

transitively. Now f̃ is a nontrivial automorphism with

f̃(1) = 1 .

By Proposition 2.2 and Proposition 2.3, we can conclude that f̃ is parabolic or
hyperbolic if and only if δ(f̃ , 0) = 0 or < 0, with respectively.
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Suppose that f is elliptic. Then there is a point p0 ∈ S satisfying that p0 ̸= p
and f(p0) = p0. Using the homogeneity of ∆, we can choose a biholomorphism
F in (13) with 0 = F−1(p0) ∈ ∆. By the rotation action R on ∆, we also
assume that p̃ = F−1(p) lies on the positive real line in ∆, i.e. p̃ = r with
0 < r < 1.

Now f̃ is an elliptic automorphism of ∆ with f̃(0) = 0, so

f̃ = Rθ

for some θ ̸= 2nπ. Moreover δ(f̃ , p̃) = δ(Rθ, r). Proposition 2.1 implies that

δ(f̃ , p̃) > 0. This completes the proof. □
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[6] P. Koebe, Über die Uniformisierung reeller algebraischer Kurven., Nachr. Ges. Wiss.

Göttingen, Math.-Phys. Kl., 1907 (1907), pp. 177–190.

[7] S. Lang, SL2(R), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam,
1975.

[8] K.-H. Lee, On parabolic and hyperbolic automorphisms of the unit disc, Internat. J.
Math. Anal., 9 (2015), pp. 1405–1413.

[9] , An intrinsic criterion for the type of automorphisms of the unit disc, East Asian

Math. J., 37 (2021), pp. 307–317.
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