
557

Comparison of Full-Field Stresses around an Inclined Crack Tip by 
Using Fringe Data of Finite Element Method with Photoelastic 

Experiment

Tae Hyun Baek*✝, Myung Soo Kim** and Lei Chen***

Abstract Abrupt change of cross-section in mechanical parts is one of significant causes of structural fracture. In 
this paper, a hybrid method is employed to analyze the stress distribution of a discontinuous plate. The plate with 
an inclined crack is utilized in our experiment and the stress field in the vicinity of crack tip is calculated 
through isochromatic fringe order of given points. This calculation can be made handy through least-squares 
method integrated with complex power series representation(Laurent series) implemented on a computer program 
for high-speed processing. In order to accurately compare calculated results with experimental ones, both of actual 
and regenerated photoelastic fringe patterns are doubled and sharpened by digital image processing. The 
experiment results show that regenerated patterns obtained by hybrid method are quite comparable to actual 
patterns.
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1. Introduction

The occurrence of cracks in mechanical parts 
makes the parts discontinuous and causes the 
stress around them much higher than those in 
the region far away from themselves. The 
discontinuous parts may fracture at the stress 
which is much lower than the ultimate strength. 
Even though their size may be very small, it 
should be a concern in the design. 

Generally, engineering problems with 
irregular geometries and the boundary conditions 
are very complicated. Thus, mathematical 
methods become quite cumbersome and 
experimental methods are usually applied for 
them. Several methods can be found in the 

literature ranging from FEM, the use of 
photoelastic-data, hybrid method and other 
various numerical and experimental procedures 
(Kobayshi, 1993; Pilkey, 2008). 

In general case, however, it is difficult to 
measure directly the mechanical quantities very 
near the region of geometric discontinuity. In 
such case, the hybrid method which combines 
the advantages of mathematical analysis and 
experimental measurements far away from them 
is one of good alternatives(Baek, 2006; Baek and 
Panganiban, 2007). 

In this paper, the hybrid method is employed 
to calculate full-field stress around an inclined 
crack in uni-axially loaded finite-width tensile 
plate and to compare with previous experimental 
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and numerical results(Rhee et al., 1996; 
Murakami, 1987). In order to conveniently 
compare those values with each, both actual and 
regenerated photoelastic fringe patterns are 
doubled and sharpened by digital image 
processing(Baek and Lee, 1994).

2. Theory Formulation

2.1 Equations of Hybrid Method

The present technique employs general 
expressions for the stress functions with 
traction-free conditions which are satisfied at the 
geometric discontinuity using conformal mapping 
and analytical continuation.

Fig. 1 Conformal mapping of an inclined crack

As shown in Fig. 1, the inverse of the 

mapping function  , namely   , maps the 
geometry of interest from the physical z-plane 
into the -plane(   ). For isotropic 

materials, the conformal transformations between 
unit circle in the -plane and the crack in the 
z-plane of length L = a/2 in Fig. 1 are given by 
(Savin, 1961)

where i =  . The branches of the square 
root of eqns. (1) are chosen so that ≥   

(j=1,2).

Then, general stress functions can be 
expressed in the –plane. In the absence of body 
forces and rigid body motion, the stresses under 
isotropy plane can be written as(Gerhardt, 1984; 
Rhee, 1995)

where ′    , ′    , 
′    , and ′    . 
Complex material parameters (j=1, 2) are the 

roots of the characteristic eqn. (3) for an 
isotropic material under plane stress.

where (i, j=1,2,6) are the elastic compliances. 

The two complex stress functions φ() and 

ψ() are related to each other by the conformal 

mapping and analytic continuation. For a 
traction-free physical boundary, the two functions 
within sub-region   of Fig. 1 can be written as 
Laurent expansions, respectively(Gerhardt, 1984; 
Rhee, 1995)  

Complex quantities B and C depend on material 
properties and are defined as

The coefficients of eqns. (4) are      

where bk and ck are real numbers. In addition to 
satisfying the traction-free conditions on the 
crack boundary  , the stresses of eqns. (2) 
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associated with these stress functions φ() and 

ψ() satisfy equilibrium and compatibility.

Combining eqns. (1) through (5) gives the 
stress through regions   of Fig. 1 in matrix 
form 

where ,    , 
and    is a rectangular coefficient matrix 
whose size depends on material properties, 
positions and the number of terms m of the 
power series expansions of eqns. (4).

2.2 Stress Intensity Factor

As shown in Fig. 2, the crack lies along the 
x'-axis in the physical z-plane and (r, θ) are the 
local polar coordinates measured from the crack 
tip. When θ = 0 and r << a, where a is the 
half of crack length, the stress intensity factor of 
Mode I and Mode II is determined as follows:

Fig. 2 Coordinate system of the inclined crack

rK yI πσ 2'= (8a)

rK yxII πτ 2''= (8b)

where  ′  and  ′′  are obtained from eqn. (6) 

and coordinate transformation.

2.3 Optical Theory for Photoelasticity

The stress-optic law relates in-plane principal 
stresses as      , where N is the 

isochromatic fringe order,   is the photoelas- 

ticity constant and t is the thickness of the 
specimen. By substituting the stresses into this 
equation, one obtains the basic relationship 
between isochromatic fringe order and the 
in-plane stress components

The techniques of fringe doubling and 
sharpening(Baek and Lee, 1994) were employed 
in order to obtain accurate isochromatic fringe 
patterns. For fringe doubling technique, two 
images are used as

where IL and ID are the light intensities of the 
light-field and dark-field isochromatic fringe 
patterns, respectively. The sharpening technique 
described here comes from the proportions of the 
gradient vector(Baek and Lee, 1994). To sharpen 
photoelastic fringes, measured changes in the 
gradient direction throughout an area are used. 
The operator T, which is used for sharpening 
fringes, is given in eqn. (11)

where A is a proportionality constant, ▽X and 
▽Y are x and y components of the photoelastic 
fringe gradient vector, respectively.
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Fig. 3 Uni-axially loaded finite-width tensile plate
containing an inclined crack

Table 1 Parameters of specimen

Description Symbol Value

Elastic modulus E 2482 MPa

Poisson's ratio ν 0.38

Photoelasticity 
constant fσ 7005 N/m

Tensile stress σ 3.05 MPa

Initial crack length 2a 12.7 mm

Width of specimen 2b 38.1 mm

Thickness of 
specimen t 3.175

(a) Dark field (b) Light field

(c) Doubled pattern (d) Sharpened pattern

Fig. 4 Experiment fringe patterns of 45° inclined 
crack

3. Experiment and Analysis

3.1 Photoelasticity Experiment

In this experiment, a PSM-11) plate shown in 
Fig. 3 is subjected to the uni-axial tension. The 
degree of inclined crack is 45° and the width of 
crack is 0.5 mm. The isochromatic fringe order 
of given points will be obtained along B-C line 
and C-D line with the help of FEM software. 
The material prosperities and dimensions of 
specimen are given by Table 1. 

In order to obtain accurate fringe data, 
fringes are doubled and sharpened by using the 
digital image program. Fig. 4 shows the original 
light-field isochromatic fringe and doubled fringe 
pattern of the loaded tensile plate containing a 
central crack.

1) Photoelastic Division, Measurement Group, Inc., 
Raleigh, NC 27611, USA

3.2 FEM Analysis

As shown in Fig. 5, a common FEM 
software ABAQUS is used to simulate the 
tensile loaded finite-width plate.

The specimen is discretized into two kinds 
of elements, CPS3(3-node linear plane stress 
triangle element) and CPS4R(4-node bilinear 
plane stress quadrilateral element). The von 
Mises stress distribution of ABAQUS model is 
shown as Fig. 6.

In order to obtain the input data of hybrid 
method, the isochromatic fringe order of given 
points on B-C line and C-D line are necessary. 
According to stress-optic law, the value of fringe 
order can be expressed by the stresses of those 
points. 

   Fig. 5 FEM model of specimen in ABAQUS

Fig. 6 ABAQUS discretization of the load tensile 
plate of Fig. 3



Journal of the KSNT Vol. 29 No. 6 561

(a) Dark field (b) Light field

(c) Doubled pattern (d) Sharpened pattern

Fig. 7 Regenerated fringe patterns of 45° inclined
crack

3.3 Hybrid Method Analysis

For given isochromatic fringe orders and a 
predetermined value of “m” in eqns. (4), 
coefficients {} are obtained by nonlinear 
least-sqaures(Sanford, 1980). Then, stress 
components are calculated by substituting {} 
into eqn. (6). To show the physical effect, full 
fringes are reconstructed using the results of {} 
obtained from the analyses, as shown in the 
right halves of Fig. 7. 

A quantitative check on the quality of fit 
between input and calculated isochromatic fringe 
order of given points shown in Table 2 is made 
by using a simple type of statistical parameter, 
such as the standard deviation(SD) of percentage 
error. For a predetermined point, the input fringe 
order (Ninp) is obtained by FEM analysis. The 
calculated fringe order (Ncal) is also determined 
at the same point by hybrid method. Comparison 
of input and calculated data are given in the 
Table 2.

The percentage error E between the 
calculated and the input fringes at any point is

(%) 100
)(
×

−
=

inp
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N
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E (12)
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When number of terms m=1, the value of 
standard deviation SD is 4.3%. 

The mixed-mode stress intensity factors of 
inclined crack are very important parameters to 
analyze the stress distribution around the crack 
tip. Here, stress intensity factors are obtained by 
hybrid method, FEM and theoretical formulation 
shown as Table 3.

Table 2 Comparison of input and calculated fringe 
orders

No x(mm) y(mm) Ninp Ncal Error(%)
1 -0.197 0.071 1.89 1.8969 0.12
2 -0.197 0.106 1.97 2.1165 7.35
3 -0.197 0.213 2.28 2.3616 3.61
4 -0.197 0.248 2.38 2.3337 -1.96
5 -0.197 0.284 2.47 2.3252 -5.93
6 -0.197 0.319 2.55 2.4311 -4.71
7 -0.197 0.354 2.62 2.7754 6.04
8 -0.161 0.354 2.66 2.7542 3.43
9 -0.126 0.354 2.72 2.7347 0.56

10 -0.091 0.354 2.78 2.6803 -3.71
11 -0.055 0.354 2.86 2.689 -5.89
12 -0.02 0.354 2.95 2.8885 -2.04
13 0.016 0.354 3.05 3.1877 4.64
14 0.051 0.354 3.15 3.2855 4.22
15 0.087 0.354 3.27 3.2329 -1.08
16 0.122 0.354 3.39 3.362 -0.76
17 0.158 0.354 3.5 3.6966 5.54
18 0.158 0.319 3.57 3.3971 -4.94

Table 3 Comparison of stress intensity factors

Stress Intensity  
Factor Hybrid FEM* Equation**

a
K I

πσ 0
0.492 0.526 0.532

I

II

K
K

1.062 1.006 1.000

* See ABAQUS Analysis User’s Manual, ABAQUS Inc., 
Providence, RI 02909, USA.

** See Reference (Anderson, 1995)
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4. Discussion and Conclusions

In this study, we use only isochromatic data 
with their respective coordinates to easily obtain 
stress field distribution and stress intensity factor 
at the geometric discontinuity. The figures and 
table presented above show that the hybrid 
method employed in this paper is an efficient 
method for calculating stress field for a 
discontinuous isotropic tensile-loaded plate. The 
stress of interest region is calculated through 
isochromatic fringe order of given points. This 
calculation has been made handy through 
least-squares method integrated with complex 
power series representation(Laurent series) 
implemented on a computer program for 
high-speed processing. The advantages of this 
method underscore the use of relatively small 
amount of data which are conveniently 
determined from the fringe loops.

Excellent results were obtained with number 
of terms m=1. Considering the experimental and 
calculated errors, we can see that the technique 
is effective and reliable. The use of hybrid 
method has a potential future and the results 
attained in this study can be used for bench 
mark test in theoretical simulation and 
experiment.
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