• Title/Summary/Keyword: complex odor

Search Result 117, Processing Time 0.025 seconds

Measurement and Analysis of Odors Generated in Traditional Markets

  • KIM, Su-Hye;CHO, Dong-Myung;KWON, Lee-Seung;JUNG, Min-Jae
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.4
    • /
    • pp.35-41
    • /
    • 2021
  • Purpose: The purpose of this study is to identify the causes of odors generated in traditional markets and to suggest appropriate application technologies to solve them. Research design, data and methodology: In order to achieve the purpose of this study, complex malodors, TVOC, and hydrogen sulfide were measured three times at each point in Wonju-city, Gangwon-do using direct-reading odor measuring equipment in Joong-ang Traditional Market's Korean beef Alley, Sundae Alley, and Joong-ang Citizens Traditional Market. Therefore, the average value was compared with the emission standard and analyzed. Results: As a result of the study, complex malodors exceeded the emission standards at all points, and hydrogen sulfide exceeded the emission standards at all except for one point. Conclusions: The odor generated in the traditional market has various causes and low concentration, so it is necessary to reduce the odor by using an appropriate technology.

Study on Real-time Detection Using Odor Data Based on Mixed Neural Network of CNN and LSTM

  • Gi-Seok Lee;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.325-331
    • /
    • 2023
  • In this paper, we propose a mixed neural network structure of CNN and LSTM that can be used to detect or predict odor occurrence, which is most required in manufacturing industry or real life, using odor complex sensors. In addition, the proposed learning model uses a complex odor sensor to receive four types of data such as hydrogen sulfide, ammonia, benzene, and toluene in real time, and applies this data to an inference model to detect and predict odor conditions. The proposed model evaluated the prediction accuracy of the learning model through performance indicators according to accuracy, and the evaluation result showed an average performance of 94% or more.

Application case of odor management applied direct olfactory method in Iksan (익산지역에서 직접관능법에 의한 악취관리 사례 연구)

  • Kim, Hwa-Ok;Park, Hui-Geun;Shin, Dae-Yewn;Kang, Gong-Unn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.17-30
    • /
    • 2009
  • In Iksan city, there have been a lot of complaints caused by offensive odor from residents living near the public environmental infrastructures and the Iksan industrial complex. To solve these problems, it is important to know the present condition of odor pollution level in these areas, the emission characteristics of malodorous gases in temporal and spatial variations in addition to meteorological components, and the facilities of major sources emitting malodorous compounds. The objectives of this study is to make the odor monitoring network for 20 people who lived and worked in areas where the environmental infrastructures and the Iksan industrial complex are located and their neighboring areas for six months from June 1st to October 31st in 2008 in Iksan and to monitor the temporal and regional frequency and characteristics of odor intensity using direct olfactory methods. As a result of odor monitoring, the highest frequency of sensed odor per month and 20 people for six months was found to be 107 in July, followed by 84 in September, 80 in August, 54 in June, 38 in October, respectively. Odor intensity trend showed a regional trend in the decreasing order of Dongsan-dong, Busong-dong, and Palbong-dong. Odor was widely perceived from night through next morning and considered as the sense of excreta, chemicals, sewage, compost, waste, etc. When high odor intensity was sensed, there were constant meteorological characteristics: relative humidity was 80~90%, wind speed was less than 0.5~1 m/sec, and main wind directions were from the east, the southeast, and the south.

Evaluation of Livestock Odor Reduction Efficiency for Odor Reduction Systems in Domestic Pig Farms (돈사용 스크러버 및 바이오커튼의 축산악취 저감효과 분석)

  • Lee, Minhyung;Yeo, Uk-hyeon;Lee, In-Bok;Jeong, Duek-young;Lee, Sang-yeon;Kim, Jun-gyu;Decano-Valentin, Cristina;Choi, Young-bae;Kang, Sol-moe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.77-86
    • /
    • 2022
  • Various odor reduction systems are being operated at pig houses to improve livestock odor issues. However, the quantitative evaluation of odor reduction efficiency is not sufficiently conducted. The analysis of factors that affect the reduction efficiency also has not been sufficiently conducted. Therefore, in this study, the reduction efficiency of representative odor reduction facilities (bio-curtain, scrubber) operated by domestic pig houses was evaluated. The odor reduction efficiency was evaluated by sampling the air before and after the odor reduction facility in 6 pig houses. Livestock odors were evaluated for complex odors, ammonia, hydrogen sulfide, and VOC. To find factors for reduction efficiency, temperature, humidity, pH of washing resolution, type of washing water, and ventilation rate was measured. As a result, it was found that the scrubber system had the highest reduction efficiency. The reduction efficiency was found to be affected by the scrubber's washing resolution, filler, operating conditions, and size. Bio-curtains may have problems such as deterioration of fan performance due to ventilation fan load, groundwater pollution, and excessive use of groundwater.

Odor generation pattern of swine manure according to the processing form of feed

  • Won Choi;Wooje Lee;Kiyoun Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.219-231
    • /
    • 2024
  • Feed has a great influence on the composition of swine manure, which is the principal cause of odor. Therefore, the purpose of this study is to simply change the shape of pig feed and control calories to find a suitable feed form for reducing the smell of swine manure. The experiment was conducted on 15 pigs from July to August 2021, and a total of three measurements were done. Three types of feed were evaluated in this study. The analysis items related to odor of swine manure are complex odor, ammonia, sulfur-based odors, and volatile organic compounds (VOCs). In the case of complex odor, dilution multiples tended to decrease over time, except for type A feed. The concentration of ammonia in all types of feed decreased over time. Most sulfur-based odorous substances except hydrogen sulfide at the first measurement were not detected. Representatively, Decane, 2,6-Dimethylnonane, and 1-Methyl-3-propylcycolhexane were detected in VOCs generated from swine manure. The major odorous substansces in swine manure have changed from ammonia and sulfur compounds to VOCs. In order to reduce the odor caused by swine manure, it is ad-vantageous to use low-calorie feed consisting of pellet-type.

Evaluation of Complex Odor and Odorous Compounds in a Pilot-Scale Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화 공정의 복합 악취 및 악취 물질 평가)

  • Park, Seyong;Jung, Dai-Hyuck;Yoo, Eui-Sang;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.33-39
    • /
    • 2009
  • This study was conducted to evaluate production of complex odor and 12 specific odorous compounds in a pilot-scale (capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each raw material was mixed with seed material and operated for two periods (1st : 50 days, 2nd : 60days). During composting, the temperature hit $90{\sim}95^{\circ}C$ after every mixing in both periods. Therefore, it was concluded that increasing temperature also saves the time which required for composting and high reduction of organics and water contents. The primary odorous compounds were ammonia, methyl mercaltan, dimethyl disulfide and trimethylamine. The concentration of the primary compounds and complex odor during the operation were higher than those on final day and most compounds did not exceed the allowable exhaust standard for odor. Also, it was found that optimal mixing time and control of high temperature are the most important parameters for odor control in ultra thermophilic aerobic composting.

  • PDF

Health Effects of the Offensive Odor in Residents Living Near the Petrochemical Industries Complex Area and the Thermoelectric Power Plant (석유화학공단과 화력발전소 주변지역 주민들이 인식하는 악취발생과 건강영향의 관련성 연구)

  • Lee, Jin-Heon;Kang, Hee-Sook;Kim, Byeong-Bin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.83-91
    • /
    • 2007
  • This study investigated the health effects of offensive odor in residents living near the petrochemical industry complex area(PICA) and the thermoelectric power plant(TPP) by using questionnaire. Residents who felt the offensive odor were 58.3% at PICA, 50.9% at TPP and 24.4% at classical fishing and agrarian villages (CFAV)(p=0.000). People who answered that the offensive odor was sever at CFAV were 95.2% only on summer, but at PICA and TPP, were 44.1% and 57.3% on Spring, 62.4% and 68.8% on Summer, 22.0% and 31.7% on Autumn, and 21.7% and 25.7% on Winter, respectively. Average days that the odor occurred were 4.4 days/month at CFAV, but 12.0 and 9.5 days/month at PICA and TPP, respectively. People who experienced the sleep disturbance were 28.0% and 27.1% at PICA and TPP, respectively. The most frequently subjective symptoms were headache(0.953), frequently sneezing(0.825), itchy eyes(0.766), and stimulating eyes(0.709) at PICA, and headache(1.082), itchy eyes(0.931), itchy skin(0.826), and frequent sneezing(0.674) at TPP, respectively. At PICA and TPP, the occurrence rates of diseases in respondents' families were 15.4% and 15.6% for asthma, 12.4% and 9.2% for respiratory diseases, 27.8% and 31.2% for skin diseases, and 9.1% and 6.9% for nervous diseases, respectively. In conclusion, many residents who living near the PICA and TPP experienced the offensive odor during four seasons, especially high on summer, the most frequently subjective symptoms such as headache, itchy and stimulating eyes, frequently sneezing, and some diseases among their families such as asthma, respiratory diseases, skin diseases, and nervous diseases.

A Study on Emission Characteristics of Odor Compounds from Waste Transfer Station (적환장에서 발생하는 악취 분포 특성에 관한 연구)

  • Jeon, Jae-Sik;Kim, Eun-Sook;Yoo, Seung-Sung;Oh, Seok-Ryul;Choi, Han-Young
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.418-425
    • /
    • 2013
  • Objective: This study was carried out for the purpose of identifying major substances contributing to the production of odor and evaluating the characteristic of odors. Methods: Complex odor and 17 odorous compounds were measured at 18 waste transfer stations located in Seoul. Results: The dilution ratio value of complex odor ranged from 4 to 30 times in the boundary layer of 18 waste transfer stations. At 6 measurement points among the 18 waste transfer stations, the dilution ratio values exceeded standards (15 times). When the results were evaluated in terms of their contribution to the formation of malodor, the patterns indicated that the highest concentration values in the residential waste disposal process were of i-valeraldehyde and acetaldehyde, while butyraldehyde and acetaldehyde accounted for a large proportion of odorous compounds from the waste recycling process. Conclusions: It was found that butyraldehyde and acetaldehyde were the primary compounds released from the food waste disposal process. Overall, aldehyde compounds were the greatest contributor to detectable odor intensity emitted at the waste transfer stations.

The Characteristic and Management of Odor Emitted from Foodwaste Treatment Facility (음식물류폐기물 처리시설에서의 악취발생 특성 및 관리방안)

  • Yoo, Seung-Sung;Kim, Young-Doo;Lee, Jun-Yeon;Cha, Young-Seop;Kim, Eun-Sook;Jeon, Jae-Sik;Sunwoo, Young;Eom, Seok-Won;Chae, Young-Zoo
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.353-365
    • /
    • 2012
  • This study is understanding characteristics and analyzing contributions of the odor causing compounds of complex-odor & major specified odor materials, and contribution analysis, caused pre-treatment facilities(input and storage) and post-treatment facilities(heating and drying). The target of this study is feeds-production-facilities, located in Seoul. The averaged complex-odor compounds on the boundary line is 21 times higher, and it is 15 times higher than emission standards. In cracking&collection(pre-treatment facilities), the concentration of compounds is 4,881 times, 2,080 times in drying, and 1,442 times in putting&storing facilities. Ammonia occupies the largest portion of the results of monitoring specified odor compounds in input&storage facilities, followed Acetaldehyde > Hydrogen sulfide > Methyl mercaptan. In cracking&collection, Ammonia also occupies most of odor compounds, followed Methyl mercaptan > Acetaldehyde > Dimethyl disulfide > Dimethyl sulfide > Hydrogen sulfide. Acetaldehyde > Methyl mercaptan in drying facilities. On the boundary line, however, the concentration of specified odor compounds stays below emission standards. The result of contribution analysis is that methyl mercaptan has the highest contribution in input & storage, as well as cracking&collection facilities, followed Acetaldehyde > Hydrogen sulfide > Dimethyl sulfide > Dimethyl disulfide. In the drying facilities, the contribution shows Methyl mercaptan > Acetaldehyde > i-Valeraldehyde and Butyraldehyde. Therefore, to decrease odor in foodwaste treatment facilities, proper prevention facilities need to be installed and operated, according to characteristics of individual odor compounds, based on monitored data.

Analysis of Odor Data Based on Mixed Neural Network of CNNs and LSTM Hybrid Model

  • Sang-Bum Kim;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.464-469
    • /
    • 2023
  • As modern society develops, the number of diseases caused by bad smells is increasing. As it can harm people's health, it is important to predict in advance the extent to which bad smells may occur, inform the public about this, and take preventive measures. In this paper, we propose a hybrid neural network structure of CNN and LSTM that can be used to detect or predict the occurrence of odors, which are most required in manufacturing or real life, using odor complex sensors. In addition, the proposed learning model uses a complex odor sensor to receive four types of data, including hydrogen sulfide, ammonia, benzene, and toluene, in real time, and applies this data to the inference model to detect and predict the odor state. The proposed model evaluated the prediction accuracy of the training model through performance indicators based on accuracy, and the evaluation results showed an average performance of more than 94%.